Fluid Mechanical Approaches for Rational Design of Infiltrated Electrodes of Solid Oxide Fuel Cells

  • Mingi Choi
  • Jongseo Lee
  • Wonyoung LeeEmail author
Regular Paper


Infiltration-based composite electrodes are one of the most promising structures to obtain solid oxide fuel cells (SOFCs) with high performance. For a rational design of advanced composite electrodes, we report here a comprehensive model based on fluid mechanics by using the Peclet number and contact angle hysteresis to precisely control the morphologies of the infiltrated nanoparticles. Depending on the key parameter, the drying rate, three distinct morphologies—film-like coating, discrete coating, and concentrated coating—were suggested for the model and confirmed through experiments on the infiltration of the electrode material into the porous electrolyte scaffold. We believe that these results can provide an in-depth understanding of the infiltration process, which will help in arriving at simple fabrication guidelines for designing advanced nanostructures using wet chemical processes.


Fluid mechanical approaches Infiltration Electrode Solid oxide fuel cells 



This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010032170).


  1. 1.
    Wachsman, E. D., & Lee, K. T. (2011). Lowering the temperature of solid oxide fuel cells. Science, 334(18), 935–939.Google Scholar
  2. 2.
    Adler, S. B. (2004). Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 104(10), 4791–4843.Google Scholar
  3. 3.
    Nie, L., Liu, M., Zhang, Y., & Liu, M. (2010). La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. Journal of Power Sources, 195(15), 4704–4708.Google Scholar
  4. 4.
    Su, P. C., Chao, C. C., Shim, J. H., Fasching, R., & Prinz, F. B. (2008). Solid oxide fuel cell with corrugated thin film electrolyte. Nano Letters, 8(8), 2289–2292.Google Scholar
  5. 5.
    Ahn, M., Lee, J., & Lee, W. (2017). Nanofiber-based composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 353, 176–182.Google Scholar
  6. 6.
    An, J., Kim, Y. B., Park, J., Gur, T. M., & Prinz, F. B. (2013). Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm2 at 450 degrees. Nano Letters, 13(9), 4551–4555.Google Scholar
  7. 7.
    Choi, M., Hwang, S., Byun, D., & Lee, W. (2016). Enhanced charge transfer with Ag grids at electrolyte/electrode interfaces in solid oxide fuel cells. J. Mater. Chem. A, 4(12), 4420–4424.Google Scholar
  8. 8.
    Choi, M., Koo, J. Y., Ahn, M., & Lee, W. (2017). Effects of grain boundaries at the electrolyte/cathode interfaces on oxygen reduction reaction kinetics of solid oxide fuel cells. B Kor Chem Soc, 38, 423–428.Google Scholar
  9. 9.
    Zhu, Y., Zhou, W., Ran, R., Chen, Y., Shao, Z., & Liu, M. (2016). Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells. Nano Letters, 16(1), 512–518.Google Scholar
  10. 10.
    Son, J.-W., & Song, H.-S. (2014). Influence of current collector and cathode area discrepancy on performance evaluation of solid oxide fuel cell with thin-film-processed cathode. Int J Precis Eng Manuf Green Tech, 1(4), 313–316.Google Scholar
  11. 11.
    Murray, E. P., Sever, M. J., & Barnett, S. A. (2002). Electrochemical performance of (La, Sr)(Co, Fe)O3–(Ce, Gd)O3 composite cathodes. Solid State Ionics, 148(1), 27–34.Google Scholar
  12. 12.
    Fan, X., You, C. Y., Zhu, J. L., Chen, L., & Xia, C. R. (2015). Fabrication of LSM-SDC composite cathodes for intermediate-temperature solid oxide fuel cells. Ionics, 21(8), 2253–2258.Google Scholar
  13. 13.
    Shen, F., & Lu, K. (2015). La0.6Sr0.4Co0.2Fe0.8O3 cathodes incorporated with Sm0.2Ce0.8O2 by three different methods for solid oxide fuel cells. Journal of Power Sources, 296, 318–326.Google Scholar
  14. 14.
    Xi, X., Kondo, A., Kozawa, T., & Naito, M. (2016). LSCF–GDC composite particles for solid oxide fuel cells cathodes prepared by facile mechanical method. Advanced Powder Technology, 27(2), 646–651.Google Scholar
  15. 15.
    Ding, D., Li, X., Lai, S. Y., Gerdes, K., & Liu, M. (2014). Enhancing SOFC cathode performance by surface modification through infiltration. Energ. Environ. Sci, 7(2), 552–575.Google Scholar
  16. 16.
    Jiang, S. P. (2012). Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challengesm. Int. J. Hydrogen Energ, 37(1–2), 449–470.Google Scholar
  17. 17.
    Vohs, J. M., & Gorte, R. J. (2009). High-performance SOFC cathodes prepared by infiltration. Advanced Materials, 21(9), 943–956.Google Scholar
  18. 18.
    Lee, S. I., Kim, J., Son, J. W., Lee, J. H., Kim, B. K., Je, H. J., et al. (2014). High performance air electrode for solid oxide regenerative fuel cells fabricated by infiltration of nano-catalysts. Journal of Power Sources, 250, 15–20.Google Scholar
  19. 19.
    Nicollet, C., Flura, A., Vibhu, V., Rougier, A., Bassat, J. M., & Grenier, J. C. (2016). An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone. International Journal Of Hydrogen Energy, 41(34), 15538–15544.Google Scholar
  20. 20.
    Ding, D., Liu, M., Liu, Z., Li, X., Blinn, K., Zhu, X., et al. (2013). Efficient electro-catalysts for enhancing surface activity and stability of SOFC cathodes. Advanced Energy Materials, 3(9), 1149–1154.Google Scholar
  21. 21.
    Burye, T. E., & Nicholas, J. D. (2015). Nano-ceria pre-infiltration improves La0.6Sr0.4Co0.8Fe0.2O3 − x infiltrated Solid Oxide Fuel Cell cathode performance. Journal of Power Sources, 300, 402–412.Google Scholar
  22. 22.
    Zhao, F., Wang, Z., Liu, M., Zhang, L., Xia, C., & Chen, F. (2008). Novel nano-network cathodes for solid oxide fuel cells. Journal of Power Sources, 185(1), 13–18.Google Scholar
  23. 23.
    Chen, D., Yang, G., Ciucci, F., Tadé, M, O., and Shao, Z., “3D core–shell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode,” J. Mater. Chem. A, Vol. 2, No. 5, pp. 1284-1293, 2014.Google Scholar
  24. 24.
    Yoon, K. J., Biswas, M., Kim, H. J., Park, M., Hong, J., Kim, H., et al. (2017). Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells. Nano Energy, 36, 9–20.Google Scholar
  25. 25.
    Lou, X., Liu, Z., Wang, S., Xiu, Y., Wong, C. P., & Liu, M. (2010). Controlling the morphology and uniformity of a catalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property. Journal of Power Sources, 195(2), 419–424.Google Scholar
  26. 26.
    Yu, D. I., Kwak, H. J., Doh, S. W., Ahn, H. S., Park, H. S., Kiyofumi, M., et al. (2015). Dynamics of contact line depinning during droplet evaporation based on thermodynamics. Langmuir, 31(6), 1950–1957.Google Scholar
  27. 27.
    Orejon, D., Sefiane, K., & Shanahan, M. E. (2011). Stick-slip of evaporating droplets: substrate hydrophobicity and nanoparticle concentration. Langmuir, 27(21), 12834–12843.Google Scholar
  28. 28.
    Galarraga, C., Peluso, E., & de Lasa, H. (2001). Eggshell catalysts for fischer-tropsch synthesis modeling catalyst impregnation. Chemical Engineering Journal, 82, 13–20.Google Scholar
  29. 29.
    Gardezi, S. A., Landrigan, L., Joseph, B., & Wolan, J. T. (2012). Synthesis of tailored eggshell cobalt catalysts for Fischer-Tropsch synthesis using wet chemistry techniques. Industrial and Engineering Chemistry Research, 51(4), 1703–1712.Google Scholar
  30. 30.
    Vandillen, A., Terorde, R., Lensveld, D., Geus, J., & Debjong, K. (2003). Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. Journal of Catalysis, 216(1–2), 257–264.Google Scholar
  31. 31.
    Majumder, M., Rendall, C. S., Eukel, J. A., Wang, J. Y., Behabtu, N., Pint, C. L., et al. (2012). Overcoming the “coffee-stain” effect by compositional Marangoni-flow-assisted drop-drying. J. Phys. Chem. B, 116(22), 6536–6542.Google Scholar
  32. 32.
    Hu, H., & Larson, R. G. (2006). Marangoni effect reverses coffee-ring depositions. J Phys Chem B Lett, 110(14), 7090–7094.Google Scholar
  33. 33.
    Still, T., Yunker, P. J., & Yodh, A. G. (2012). Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 28(11), 4984–4988.Google Scholar
  34. 34.
    Li, H., Luo, H., Zhang, Z., Li, Y., Xiong, B., Qiao, C., et al. (2016). Direct observation of nanoparticle multiple-ring pattern formation during droplet evaporation with dark-field microscopy. Physical Chemistry Chemical Physics: PCCP, 18(18), 13018–13025.Google Scholar
  35. 35.
    Zhang, L., Nguyen, Y., & Chen, W. (2014). Coffee ring formation dynamics on molecularly smooth substrates with varying receding contact angles. Colloid. Surface. A, 449, 42–50.Google Scholar
  36. 36.
    Bormashenko, E., Musin, A., & Zinigrad, M. (2011). Evaporation of droplets on strongly and weakly pinning surfaces and dynamics of the triple line. Colloid. Surface. A, 385(1–3), 235–240.Google Scholar
  37. 37.
    Shanahan, M. E. R. (1995). Simple theory of “stick-slip” wetting hystersis. Langmuir, 11, 1041–1043.Google Scholar
  38. 38.
    Parsa, M., Harmand, S., Sefiane, K., Bigerelle, M., & Deltombe, R. (2015). Effect of substrate temperature on pattern formation of nanoparticles from volatile drops. Langmuir, 31(11), 3354–3367.Google Scholar
  39. 39.
    Lynch, M. E., Yang, L., Qin, W., Choi, J. J., Liu, M., Blinn, K., et al. (2011). Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform. Energ Environ Sci, 4(6), 2249–2258.Google Scholar
  40. 40.
    Deng, Y., Wang, Q., Yuan, Y., & Huang, J. (2015). Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Mater. Horiz., 2(6), 578–583.Google Scholar
  41. 41.
    Yoon, B. Y., & Bae, J. (2013). Characteristics of nano La0.6Sr0.4Co0.2Fe0.8O3−δ-infiltrated La0.8Sr0.2Ga0.8Mg0.2O3−δ scaffold cathode for enhanced oxygen reduction. Int J Hydrogen Energ, 38(36), 13399–13407.Google Scholar
  42. 42.
    Wu, J., Xia, J., Lei, W., & Wang, B. P. (2013). Generation of the smallest coffee-ring structures by solute crystallization reaction on a hydrophobic surface. RSC Adv, 3(16), 5328–5331.Google Scholar
  43. 43.
    Kenjo, T., & Nakagawa, T. (1996). Ohmic resistance of the electrode-electrolyte interface in Au/YSZ oxygen electrodes. Journal of the Electrochemical Society, 143(4), L92–L94.Google Scholar
  44. 44.
    Jiang, S. (2003). Effect of contact between electrode and current collector on the performance of solid oxide fuel cells. Solid State Ionics, 160(1–2), 15–26.Google Scholar
  45. 45.
    Princen, H. M. (1968). Capillary phenomena in assemblies of parallel cylinders. J Colloid. Interf. Sci, 30(1), 69–75.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations