Effect of Maleated Anhydride on Mechanical Properties of Rice Husk Filler Reinforced PLA Matrix Polymer Composite

  • M. H. M. HamdanEmail author
  • J. P. Siregar
  • M. R. M. Rejab
  • D. Bachtiar
  • J. Jamiluddin
  • C. Tezara
Regular Paper


Polylactic acid (PLA) formulated from corn starch has a bright potential to replace the non-renewable petroleum-based plastics. The combination of PLA and natural fibre has gained interest due to its unique performance, as reported in many researches and industries. Meanwhile, rice husk produced as the by-product of rice milling can be utilised, unless it is turned completely into waste. Therefore, in the present study, the rice husk powder (RHP) was used as a filler in the PLA, so to determine the influence of the filler loading on the mechanical properties of the PLA composite. A coupling agent was selected for treatment from two options, i.e., maleic anhydride polypropylene (MAPP) and maleic anhydride polyethylene (MAPE), by applying the agents with various loading contents, such as 2, 4 and 6 wt%. The composite was fabricated by using the hot compression machine. Both the treated and untreated RHP–PLA composites were characterised via the tensile, flexural and impact strength tests. The increase in the RHP loading content led to the decrease in the tensile and flexural strengths. The applications of the coupling agents (MAPE and MAPP) did not improve the tensile and impact strengths, but the flexural strength was enhanced.


Composite Mechanical properties Natural fibers Coupling agent 



American standard for testing material


Maleic anhydride polyethylene


Maleic anhydride polypropylene


Polylactic acid


Rice husk powder


Rice husk powder reinforced polylactic acid


Scanning electron microscopic





The author would like to thank Universiti Malaysia Pahang ( for providing the facilities and equipment. This research was funded by the Ministry of Higher Education, Malaysia under the Grant no. FRGS140120.


  1. 1.
    Chand, N., Sharma, P., & Fahim, M. (2010). Tribology of maleic anhydride modified rice-husk filled polyvinylchloride. Wear, 269(11), 847–853.CrossRefGoogle Scholar
  2. 2.
    Panthapulakkal, S., Law, S., & Sain, M. (2005). Enhancement of processability of rice husk filled high-density polyethylene composite profiles. Journal of Thermoplastic Composite Materials, 18(5), 445–458.CrossRefGoogle Scholar
  3. 3.
    Derraik, J. G. (2002). The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44(9), 842–852.CrossRefGoogle Scholar
  4. 4.
    Väisänen, T., Das, O., & Tomppo, L. (2017). A review on new bio-based constituents for natural fiber-polymer composites. The Journal of Cleaner Production, 149, 582–596.CrossRefGoogle Scholar
  5. 5.
    Bharath, K. N., & Basavarajappa, S. (2016). Applications of biocomposite materials based on natural fibers from renewable resources: A review. Science and Engineering of Composite Materials, 23(2), 123–133.CrossRefGoogle Scholar
  6. 6.
    Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management (Oxford), 54, 62–73.CrossRefGoogle Scholar
  7. 7.
    Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites: Part A, 77, 1–25.CrossRefGoogle Scholar
  8. 8.
    Shah, A. U. R., Prabhakar, M., & Song, J.-I. (2017). Current advances in the fire retardancy of natural fiber and bio-based composites: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 247–262.CrossRefGoogle Scholar
  9. 9.
    Asim, M., Jawaid, M., Abdan, K., & Ishak, M. (2018). The effect of silane treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler phenolic composites. Journal of Polymers and the Environment, 26(4), 1520–1527.CrossRefGoogle Scholar
  10. 10.
    Siregar, J. P., Salit, M. S., Rahman, M. Z. A., & Dahlan, K. (2011). Thermogravimetric analysis (TGA) and differential scanning calometric (DSC) analysis of pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Pertanika Journal of Science and Technology, 19(1), 161–170.Google Scholar
  11. 11.
    Olusunmade, O. F., Adetan, D. A., & Ogunnigbo, C. O. (2016). A study on the mechanical properties of oil palm mesocarp fibre-reinforced thermoplastic. Journal of Composites, 2016, 7. Scholar
  12. 12.
    Essabir, H., Bensalah, M., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2016). Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials, 93, 134–144.CrossRefGoogle Scholar
  13. 13.
    Sajith, S., Arumugam, V., & Dhakal, H. N. (2017). Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polymer Testing, 58, 60–69.CrossRefGoogle Scholar
  14. 14.
    Battegazzore, D., Bocchini, S., Alongi, J., & Frache, A. (2014). Rice husk as bio-source of silica: Preparation and characterization of PLA–silica bio-composites. RSC Advances, 4(97), 54703–54712.CrossRefGoogle Scholar
  15. 15.
    Arjmandi, R., Hassan, A., Majeed, K., & Zakaria, Z. (2015). Rice husk filled polymer composites. International Journal of Polymer Science, 2015, 32. Scholar
  16. 16.
    Aminullah, A., Syed Mustafa, S., Nor Azlan, M., Mohd. Hafizi, N., Mohd. Ishak, Z., & Rozman, H. (2010). Effect of filler composition and incorporation of additives on the mechanical properties of polypropylene composites with high loading lignocellulosic materials. Journal of Reinforced Plastics and Composites, 29(20), 3115–3124.CrossRefGoogle Scholar
  17. 17.
    Yang, H.-S., Kim, H.-J., Son, J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2004). Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures, 63(3), 305–312.CrossRefGoogle Scholar
  18. 18.
    Fávaro, S. L., Lopes, M. S., de Carvalho Neto, A. G. V., de Santana, R. R., & Radovanovic, E. (2010). Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Composites: Part A, 41(1), 154–160.CrossRefGoogle Scholar
  19. 19.
    Rahman, M. R., Islam, M. N., Huque, M. M., Hamdan, S., & Ahmed, A. S. (2010). Effect of chemical treatment on rice husk (RH) reinforced polyethylene (PE) composites. BioResources, 5(2), 854–869.Google Scholar
  20. 20.
    Ahmad, I., Bakar, A., Ratnasari, D., Mokhilas, S. N., & Ramli, A. (2007). Direct usage of products of poly (ethylene terephthalate) glycolysis for manufacturing of rice husk/unsaturated polyester composite. Iranian Polymer Journal, 16(4), 233–239.Google Scholar
  21. 21.
    Kumagai, S., Sasaki, K., Shimizu, Y., & Takeda, K. (2008). Formaldehyde and acetaldehyde adsorption properties of heat-treated rice husks. Separation and Purification Technology, 61(3), 398–403.CrossRefGoogle Scholar
  22. 22.
    Petchwattana, N., & Covavisaruch, S. (2013). Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly (vinyl chloride). Journal of Bionic Engineering, 10(1), 110–117.CrossRefGoogle Scholar
  23. 23.
    Chaitanya, S., & Singh, I. (2018). Ecofriendly treatment of aloe vera fibers for PLA based green composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 143–150.CrossRefGoogle Scholar
  24. 24.
    Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46.CrossRefGoogle Scholar
  25. 25.
    Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications: A comprehensive review. Advanced Drug Delivery Reviews, 107, 367–392.CrossRefGoogle Scholar
  26. 26.
    Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107, 333–366.CrossRefGoogle Scholar
  27. 27.
    Qi, X., Ren, Y., & Wang, X. (2017). New advances in the biodegradation of Poly(lactic) acid. International Biodeterioration & Biodegradation, 117, 215–223.CrossRefGoogle Scholar
  28. 28.
    Dimzoski, B., Bogoeva-Gaceva, G., Srebrenkoska, V., Avella, M., Gentile, G., & Errico, M. (2008). Preparation and characterization of poly (lactic acid)/rice hulls based biodegradable composites. Journal of Polymer Engineering, 28(6–7), 369–383.Google Scholar
  29. 29.
    Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering, 4(6), 2899–2916.CrossRefGoogle Scholar
  30. 30.
    Mohammadi-Rovshandeh, J., Pouresmaeel-Selakjani, P., Davachi, S. M., Kaffashi, B., Hassani, A., & Bahmeyi, A. (2014). Effect of lignin removal on mechanical, thermal, and morphological properties of polylactide/starch/rice husk blend used in food packaging. Journal of Applied Polymer Science, 131(22).
  31. 31.
    Yussuf, A., Massoumi, I., & Hassan, A. (2010). Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. Journal of Polymers and the Environment, 18(3), 422–429.CrossRefGoogle Scholar
  32. 32.
    Tran, T. P. T., Bénézet, J.-C., & Bergeret, A. (2014). Rice and Einkorn wheat husks reinforced poly (lactic acid)(PLA) biocomposites: Effects of alkaline and silane surface treatments of husks. Industrial Crops and Products, 58, 111–124.CrossRefGoogle Scholar
  33. 33.
    Hua, J., Zhao, Z. M., Yu, W., & Wei, B. Z. (2011). Hydroscopic and mechanical properties performance analysis of rice husk powder/PLA composites (pp. 1231–1235). Geneva: Trans Tech Publications.Google Scholar
  34. 34.
    Chen, R. S., & Ahmad, S. (2016). Characterization of rice husk biofibre-reinforced recycled thermoplastic blend biocomposite. London: InTech.CrossRefGoogle Scholar
  35. 35.
    Arjmandi, R., Ismail, A., Hassan, A., & Bakar, A. A. (2017). Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction and Building Materials, 152, 484–493.CrossRefGoogle Scholar
  36. 36.
    Yam, R., & Mak, D. (2014). A cleaner production of rice husk-blended polypropylene eco-composite by gas-assisted injection moulding. Journal of Cleaner Production, 67, 277–284.CrossRefGoogle Scholar
  37. 37.
    Zurina, M., Ismail, H., & Bakar, A. (2004). Rice husk powder–filled polystyrene/styrene butadiene rubber blends. Journal of Applied Polymer Science, 92(5), 3320–3332.CrossRefGoogle Scholar
  38. 38.
    Yang, H.-S., Wolcott, M. P., Kim, H.-S., Kim, S., & Kim, H.-J. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79(3), 369–375.CrossRefGoogle Scholar
  39. 39.
    Kim, H.-S., Lee, B.-H., Choi, S.-W., Kim, S., & Kim, H.-J. (2007). The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites: Part A, 38(6), 1473–1482.CrossRefGoogle Scholar
  40. 40.
    Ihemouchen, C., Djidjelli, H., Boukerrou, A., Fenouillot, F., & Barrès, C. (2013). Effect of compatibilizing agents on the mechanical properties of high-density polyethylene/olive husk flour composites. Journal of Applied Polymer Science, 128(3), 2224–2229.Google Scholar
  41. 41.
    Huner, U. (2017). Effect of chemical treatment and maleic anhydride grafted polypropylene coupling agent on rice husk and rice husk reinforced composite. Materials Express, 7(2), 134–144.CrossRefGoogle Scholar
  42. 42.
    Obasi, H. C. (2015). Peanut husk filled polyethylene composites: Effects of filler content and compatibilizer on properties. Journal of Polymers, 2015, 9. Scholar
  43. 43.
    Oksman, K., Skrifvars, M., & Selin, J.-F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317–1324.CrossRefGoogle Scholar
  44. 44.
    Premalal, H. G., Ismail, H., & Baharin, A. (2002). Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer Testing, 21(7), 833–839.CrossRefGoogle Scholar
  45. 45.
    Rosa, S. M. L., Santos, E. F., Ferreira, C. A., & Nachtigall, S. M. B. (2009). Studies on the properties of rice-husk-filled-PP composites: Effect of maleated PP. Materials Research, 12(3), 333–338.CrossRefGoogle Scholar
  46. 46.
    Jaramillo, N., Hoyos, D., & Santa, J. F. (2016). Composites with pineapple-leaf fibers manufactured by layered compression molding. Ingenieria y Competitividad, 18(2), 151–162.CrossRefGoogle Scholar
  47. 47.
    Chandramohan, D., & Presin Kumar, A. J. (2017). Experimental data on the properties of natural fiber particle reinforced polymer composite material. Data in Brief, 13, 460–468.CrossRefGoogle Scholar
  48. 48.
    Yaacab, N. D., Ismail, H., & Ting, S. S. (2016). Potential use of paddy straw as filler in poly lactic acid/paddy straw powder biocomposite: Thermal and thermal properties. Procedia Chemistry, 19(Supplement C), 757–762.CrossRefGoogle Scholar
  49. 49.
    Rozman, H., Musa, L., & Abubakar, A. (2005). The mechanical and dimensional properties of rice husk-unsaturated polyester composites. Polymer: Plastics Technology and Engineering, 44(3), 489–500.Google Scholar
  50. 50.
    Salmah, H., Ruzaidi, C., & Supri, A. (2009). Compatibilisation of polypropylene/ethylene propylene diene terpolymer/kaolin composites: The effect of maleic anhydride-grafted-polypropylene. Journal of Physical Science, 20(1), 99–107.Google Scholar
  51. 51.
    Salasinska, K., & Ryszkowska, J. (2015). The effect of filler chemical constitution and morphological properties on the mechanical properties of natural fiber composites. Composite Interfaces, 22(1), 39–50.CrossRefGoogle Scholar
  52. 52.
    Pfister, D. P., & Larock, R. C. (2010). Thermophysical properties of conjugated soybean oil/corn stover biocomposites. Bioresource Technology, 101(15), 6200–6206.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • M. H. M. Hamdan
    • 1
    Email author
  • J. P. Siregar
    • 1
  • M. R. M. Rejab
    • 1
  • D. Bachtiar
    • 1
  • J. Jamiluddin
    • 1
  • C. Tezara
    • 2
  1. 1.Faculty of Mechanical EngineeringUniversiti Malaysia PahangPekanMalaysia
  2. 2.Faculty of Engineering and Quantity SurveyingINTI International UniversityNilaiMalaysia

Personalised recommendations