Advertisement

Diffusion Enhancement during Electrically Assisted Brazing of Ferritic Stainless Steel Alloys

  • Viet Tien Luu
  • Thi Kieu Anh Dinh
  • Hrishikesh Das
  • Ju-Ri Kim
  • Sung-Tae Hong
  • Hyun-Min Sung
  • Heung Nam Han
Regular Paper
  • 29 Downloads

Abstract

The electrically assisted brazing of a ferritic stainless steel with nickel-based filler metal is experimentally investigated. During electrically assisted brazing of a lap joint, the temperature of the joint is first rapidly increased to a brazing temperature and held nearly constant for a specific period using a pulsed electric current. Microstructural analysis results strongly suggest that the electric current during electrically assisted brazing enhances diffusion between the filler metal and the ferritic stainless steel, thus inducing significantly thicker diffusion zones compared with induction brazing. The mechanical test results show that the strength of the electrically assisted brazing joint is comparable to or even superior to those of the joint fabricated by induction brazing, while the process time of the electrically assisted brazing is significantly shorter than that of induction brazing.

Keywords

Electrically assisted Brazing Diffusion Stainless steels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohandas, T., Reddy, G. M., and Naveed, M., “A Comparative Evaluation of Gas Tungsten and Shielded Metal Arc Weld of a Ferritic Stainless Steel,” Journal of Materials Processing Technology, Vol. 94, Nos. 2–3, pp. 133–140, 1999.CrossRefGoogle Scholar
  2. 2.
    Kim, K.-H., Bang, H.-S., Ro, C.-S., and Bang, H.-S., “Influence of Preheating Source on Mechanical Properties and Welding Residual Stress Characteristics in Ultra Thin Ferritic Stainless Steel Hybrid Friction Stir Welded Joints,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 4, No. 4, pp. 393–400, 2017.CrossRefGoogle Scholar
  3. 3.
    Taban, E., Deleu, E., Dhooge, A., and Kaluc, E., “Laser Welding of Modified 12% Cr Stainless Steel: Strength, Fatigue, Toughness, Microstructure and Corrosion Properties,” Materials and Design, Vol. 30, No. 4, pp. 1193–1120, 2009.CrossRefGoogle Scholar
  4. 4.
    Yang, R.-T. and Chen, Z.-W., “A Study on Fiber Laser Lap Welding of Thin Stainless Steel,” International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 2, pp. 207–214, 2013.CrossRefGoogle Scholar
  5. 5.
    Shiue, R. K., Wu, S. K., and Hung, C. M., “Infrared Repair Brazing of 403 Stainless Steel with A Nickel-based Braze Alloy,” Metallurgical and Materials Transactions: A, Vol. 33, No. 6, pp. 1765–1773, 2002.CrossRefGoogle Scholar
  6. 6.
    Ou, C. L., Liaw, D. W., Du, Y. C., and Shiue, R. K., “Brazing of 422 Stainless Steel using the AWS Classification BNi-2 Braze Alloy,” Journal of Materials Science, Vol. 41, No. 19, pp. 6353–6361, 2006.CrossRefGoogle Scholar
  7. 7.
    Wu, X., Chandel, R. S., Pheow, S. H., and Li, H., “Brazing of Inconel X-750 to Stainless Steel 304 using Induction Process,” Materials Science and Engineering: A, Vol. 288, No. 1, pp. 84–90, 2000.CrossRefGoogle Scholar
  8. 8.
    Lugscheider, E. and Partz, K. D., “High Temperature Brazing of Stainless Steel with Nickel-base Filler Metals BNi-2, BNi-5 and BNi-7,” Welding Journal, Vol. 62, No. 6, pp. 160–164, 1983.Google Scholar
  9. 9.
    Conrad, H., “Electroplasticity in Metals and Ceramics,” Materials Science and Engineering: A, Vol. 287, No. 2, pp. 276–287, 2000.CrossRefGoogle Scholar
  10. 10.
    Li, Y., Yang, Y., and Feng, X., “Influence of Electric Current on Kirkendall Diffusion of Zn/Cu Couples,” Journal of Materials Science and Technology, Vol. 24, No. 3, pp. 410–414, 2008.CrossRefGoogle Scholar
  11. 11.
    Kim, M.-J., Lee, K., Oh, K. H., Choi, I.-S., Yu, H.-H., et al., “Electric Current-Induced Annealing During Uniaxial Tension of Aluminum Alloy,” Scripta Materialia, Vol. 75, pp. 58–61, 2014.CrossRefGoogle Scholar
  12. 12.
    Kim. M.-S., Vinh, N. T., Yu, H.-H., Hong, S.-T., Lee, H.-W., et al., “Effect of Electric Current Density on the Mechanical Property of Advanced High Strength Steels under Quasi-Static Tensile Loads,” International Journal of Precision Engineering and Manufacturing, Vol. 15, No. 6, pp. 1207–1213, 2014.CrossRefGoogle Scholar
  13. 13.
    Nguyen-T., H.-D., Oh, H.-S., Hong, S.-T., Han, H. N., Cao, J., et al., “A Review of Electrically-Assisted Manufacturing,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 2, No. 4, pp. 365–376, 2015.CrossRefGoogle Scholar
  14. 14.
    Thien, N. T., Hong, S.-T., Kim, M.-J., Han, H. N., Yang, D.-H., et al., “Electrically Assisted Bake Hardening of Complex Phase Ultra-High Strength Steels,” International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 2, pp. 225–231, 2016.CrossRefGoogle Scholar
  15. 15.
    Oh, H.-S., Cho, H.-R., Park, H., Hong, S.-T., Chun, D.-M., et al., “Study of Electrically-Assisted Indentation for Surface Texturing,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 2, pp. 161–165, 2016.CrossRefGoogle Scholar
  16. 16.
    Xu, Z., Peng, L., and Lai, C., “Electrically Assisted Solid-State Pressure Welding Process of SS 316 Sheet Metals,” Journal of Materials Processing Technology, Vol. 214, No. 11, pp. 2212–2219, 2014.CrossRefGoogle Scholar
  17. 17.
    Kim, W., Yeom, K.-H., Thien, N. T., Hong, S.-T., Min, B.-K., et al., “Electrically Assisted Blanking using the Electroplasticity of Ultra-High Strength Metal Alloys,” CIRP Annals–Manufacturing Technology, Vol. 63, No. 1, pp. 273–276, 2014.CrossRefGoogle Scholar
  18. 18.
    Baranov, S. A., Staschenko, V. I., Sukhov, A. V., Troitskiy, O. A., and Tyapkin, A. V., “Electroplastic Metal Cutting,” Russian Electrical Engineering, Vol. 82, No. 9, pp. 477–479, 2011.CrossRefGoogle Scholar
  19. 19.
    Ng, M. K., Li, L., Fan, Z., Go, R. X., Smith III, E. F., et al., “Joining Sheet Metals by Electrically-Assisted Roll Bonding,” CIRP Annals–Manufacturing Technology, Vol. 64, No. 1, pp. 273–276, 2015.CrossRefGoogle Scholar
  20. 20.
    Davies, J. and Simpson, P., “Induction Heating Handbook,” McGraw-Hill, 1979.Google Scholar
  21. 21.
    Yu, C.-C., Su, P.-C., Bai, S. J., and Chuang, T.-H., “Nickel-Tin Solid-Liquid Inter-Diffusion Bonding,” International Journal of Precision Engineering and Manufacturing, Vol. 15, No. 1, pp. 143–147, 2014.CrossRefGoogle Scholar
  22. 22.
    Atabaki, M. M., Wati, J. N., and Idris, J. “Transient Liquid Phase Diffusion Brazing of Stainless Steel 304,” Welding Journal, Vol. 92, pp. 57, 2013.Google Scholar
  23. 23.
    Thien, N. T., Jeong, Y.-H., Hong, S.-T., Kim, M.-J., Han, H. N., et al., “Electrically Assisted Tensile Behavior of Complex Phase Ultra-High Strength Steel,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 4, pp. 325–333, 2016.CrossRefGoogle Scholar
  24. 24.
    Kim, M.-J., Lee, M.-G., Hariharan, K., Hong, S.-T., Choi, I.-S., et al., “Electric Current-Assisted Deformation Behavior of Al-Mg-Si Alloy under Uniaxial Tension,” International Journal of Plasticity, Vol. 94, pp. 148–170, 2017.CrossRefGoogle Scholar
  25. 25.
    Park, J.-W., Jeong, H.-J., Jin, S.-W., Kim, M.-J., Lee, K., et al., “Effect of Electric Current on Recrystallization Kinetics in Interstitial Free Steel and AZ31 Magnesium Alloy,” Materials Characterization, Vol. 133, pp. 70–76, 2017.CrossRefGoogle Scholar
  26. 26.
    Molotskii, M. and Fleurov, V., “Magnetic Effects in Electroplasticity of Metals,” Physical Review B, Vol. 52, No. 22, pp. 15829–15834, 1995.CrossRefGoogle Scholar
  27. 27.
    Khorram, A. and Ghoreishi, M., “Comparative Study on Laser Brazing and Furnace Brazing of Inconel 718 Alloys with Silver Based Filler Metal,” Optics & Laser Technology, Vol. 68, pp. 165–174, 2015.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversity of UlsanUlsanRepublic of Korea
  2. 2.Department of Materials Science & Engineering and Center for Iron & Steel Research, RIAMSeoul National UniversityGwanak-guRepublic of Korea

Personalised recommendations