Advertisement

Thin Film Solid Oxide Fuel Cells Operating Below 600°C: A Review

  • Yoon Ho Lee
  • Ikwhang Chang
  • Gu Young Cho
  • Joonho Park
  • Wonjong Yu
  • Waqas Hassan Tanveer
  • Suk Won Cha
Review Paper
  • 111 Downloads

Abstract

Thin film solid oxide fuel cells (TF-SOFCs) are one of the promising portable power sources in terms of rapid on/off, compact system volume, and high power density. This paper reviews fabrications, and designs of TF-SOFCs operating the temperature range of 300-500°C. The fabricating processes of both the electrolyte and the electrode via chemical vapor depositions and physical vapor depositions are discussed. The two platforms for designing TF-SOFCs are described: porous substrate and free-standing structures.

Keywords

Solid oxide fuel cell Thin film Low temperature Catalyst Sputter Atomic layer deposition 

References

  1. 1.
    Choi, J.-H., Moon, Y., Lee, S.-H., In, J.-H., and Jeong, S., “Wavelength Dependence of the Ablation Characteristics of Cu (In, Ga) Se2 Solar Cell Films and Its Effects on Laser Induced Breakdown Spectroscopy Analysis,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 3, no. 2, pp. 167–171, 2016.CrossRefGoogle Scholar
  2. 2.
    Park, Y.-J., Kim, J.-G., Lee, G.-H., Kim, Y.-J., and Oh, J.-Y., “Effects of Bearing Characteristics on Load Distribution and Sharing of Pitch Reducer for Wind Turbine,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 3, no. 1, pp. 55–65, 2016.CrossRefGoogle Scholar
  3. 3.
    Sung, C.-M. and Han, M.-C., “Design and Performance Evaluation of Hinge Type Pitch Control System in Small-Size Wind Turbine,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 3, no. 4, pp. 335–341, 2016.CrossRefGoogle Scholar
  4. 4.
    Kim, H., Kim, K., and Paek, I., “Power Regulation of Upstream Wind Turbines for Power Increase in a Wind Farm,” International Journal of Precision Engineering and Manufacturing, vol. 17, no. 5, pp. 665–670, 2016.CrossRefGoogle Scholar
  5. 5.
    Mondal, A. K., Mondal, S., Devalla, V., Sharma, P., and Gupta, M. K., “Advances in Floating Aerogenerators: Present Status and Future,” International Journal of Precision Engineering and Manufacturing, vol. 17, no. 11, pp. 1555–1568, 2016.CrossRefGoogle Scholar
  6. 6.
    Bhandari, B., Ahn, S.-H., and Ahn, T.-B., “Optimization of Hybrid Renewable Energy Power System for Remote Installations: Case Studies for Mountain and Island,” International Journal of Precision Engineering and Manufacturing, vol. 17, no. 6, pp. 815–822, 2016.CrossRefGoogle Scholar
  7. 7.
    Zhang, J., Zheng, C., Cha, S. W., and Duan, S., “Co-State Variable Determination in Pontryagin’s Minimum Principle for Energy Management of Hybrid Vehicles,” International Journal of Precision Engineering and Manufacturing, vol. 17, no. 9, pp. 1215–1222, 2016.CrossRefGoogle Scholar
  8. 8.
    Cho, S.-J., Cho, Y.-W., Lee, M. G., and Kim, J. H., “Variable Impact Analysis of Linear Generator by Using Response Surface Method,” International Journal of Precision Engineering and Manufacturing, vol. 17, no. 9, pp. 1223–1228, 2016.CrossRefGoogle Scholar
  9. 9.
    Zheng, C. and Cha, S. W., “Real-Time Application of Pontryagin’s Minimum Principle to Fuel Cell Hybrid Buses Based on Driving Characteristics of Buses,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 4, no. 2, pp. 199–209, 2017.CrossRefGoogle Scholar
  10. 10.
    Choi, W. Y., Lee, J. W., Kim, M. J., Park, C. J., Jeong, Y. H., et al., “Durability Tests of Rh/Al-Ce-Zr Catalysts Coated on NiCrAl Metal Foam for ATR of Dodecane at High Temperature,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 4, no. 2, pp. 183–189, 2017.CrossRefGoogle Scholar
  11. 11.
    Dhand, V., Mittal, G., Rhee, K. Y., and Park, S.-J., “Synthesis and Comparison of Different Spinel Ferrites and their Catalytic Activity during Chemical Vapor Deposition of Polymorphic Nanocarbons,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 4, no. 4, pp. 441–451, 2017.CrossRefGoogle Scholar
  12. 12.
    Bhandari, B., Lee, K.-T., Chu, W.-S., Lee, C. S., Song, C.-K., et al., “Socio-Economic Impact of Renewable Energy-Based Power System in Mountainous Villages of Nepal,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 4, no. 1, pp. 37–44, 2017.CrossRefGoogle Scholar
  13. 13.
    Kim, Y., Park, J., Lee, N.-K., and Yoon, J., “Profile Design of Loop-Type Blade for Small Wind Turbine,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 4, no. 4, pp. 387–392, 2017.CrossRefGoogle Scholar
  14. 14.
    Fazlizan, A., Chong, W. T., Yip, S. Y., Poh, S. C., and Muzammil, W. K., “Double Multiple Stream Tube Analysis of Non-Uniform Wind Stream of Exhaust Air Energy Recovery Turbine Generator,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 4, no. 4, pp. 401–407, 2017.CrossRefGoogle Scholar
  15. 15.
    Lim, C. W., “Design and Manufacture of Small-Scale Wind Turbine Simulator to Emulate Torque Response of MW Wind Turbine,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 4, no. 4, pp. 409–418, 2017.CrossRefGoogle Scholar
  16. 16.
    Yang, S.-M., Ji, H.-S., Shim, D.-S., Baek, J.-H., and Park, S.-H., “Conical Roll-Twist-Bending Process for Fabrication of Metallic Archimedes Spiral Blade Used in Small Wind Power Generator,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 4, no. 4, pp. 431–439, 2017.CrossRefGoogle Scholar
  17. 17.
    Jahangiri, M. and Shamsabadi, A. A., “Designing a Horizontal-Axis Wind Turbine for South Khorasan Province: A Case Study,” International Journal of Precision Engineering and Manufacturing, vol. 18, no. 10, pp. 1463–1473, 2017.CrossRefGoogle Scholar
  18. 18.
    Al-Hamadani, H., An, T., King, M., and Long, H., “System Dynamic Modelling of Three Different Wind Turbine Gearbox Designs under Transient Loading Conditions,” International Journal of Precision Engineering and Manufacturing, vol. 18, no. 11, pp. 1659–1668, 2017.CrossRefGoogle Scholar
  19. 19.
    Yi, H.-S., Jeong, J.-B., Cha, S.-W., and Zheng, C.-H., “Optimal Component Sizing of Fuel Cell-Battery Excavator Based on Workload,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 5, no. 1, pp. 103–110, 2018.CrossRefGoogle Scholar
  20. 20.
    Atalay, T., Köysal, Y., Özdemir, A. E., and Özbaş, E., “Evaluation of Energy Efficiency of Thermoelectric Generator with Two-Phase Thermo-Syphon Heat Pipes and Nano-Particle Fluids,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 5, no. 1, pp. 5–12, 2018.CrossRefGoogle Scholar
  21. 21.
    Yoo, C.-H., Park, J.-H., and Park, S.-S., “Design and Evaluation of Performance Tester for Yaw Brakes in Wind Turbines,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 5, no. 1, pp. 81–87, 2018.CrossRefGoogle Scholar
  22. 22.
    Shao, Z. and Haile, S. M., “A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells,” Nature, vol. 431, no. 7005, pp. 170–173, 2004.CrossRefGoogle Scholar
  23. 23.
    Hibino, T., Hashimoto, A., Inoue, T., Tokuno, J.-I., Yoshida, S.-I., et al., “A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures,” Science, vol. 288, no. 5473, pp. 2031–2033, 2000.CrossRefGoogle Scholar
  24. 24.
    Minh, N. Q., “Ceramic Fuel Cells,” Journal of the American Ceramic Society, vol. 76, no. 3, pp. 563–588, 1993.CrossRefGoogle Scholar
  25. 25.
    Wachsman, E. D. and Lee, K. T., “Lowering the Temperature of Solid Oxide Fuel Cells,” Science, vol. 334, no. 6058, pp. 935–939, 2011.CrossRefGoogle Scholar
  26. 26.
    Heo, P., Kim, T. Y., Ha, J., Choi, K. H., Chang, H., et al., “Intermediate-Temperature Fuel Cells with Amorphous Sn0.9In0.1P2O7 Thin Film Electrolytes,” Journal of Power Sources, vol. 198, pp. 117–121, 2012.CrossRefGoogle Scholar
  27. 27.
    Chang, I., Heo, P., and Cha, S. W., “Thin Film Solid Oxide Fuel Cell Using a Pinhole-Free and Dense Y-Doped BaZrO3,” Thin Solid Films, vol. 534, pp. 286–290, 2013.CrossRefGoogle Scholar
  28. 28.
    Su, P.-C., Chao, C.-C., Shim, J. H., Fasching, R., et al., “Solid Oxide Fuel Cell with Corrugated Thin Film Electrolyte,” Nano Letters, vol. 8, no. 8, pp. 2289–2292, 2008.CrossRefGoogle Scholar
  29. 29.
    An, J., Kim, Y.-B., Park, J., Gur, T. M., and Prinz, F. B., “Three-Dimensional Nanostructured Bilayer Solid Oxide Fuel Cell with 1.3W/cm2 at 450C,” Nano Letters, vol. 13, no. 9, pp. 4551–4555, 2013.CrossRefGoogle Scholar
  30. 30.
    Ji, S., Ha, J., Park, T., Kim, Y., Koo, B., “Substrate-Dependent Growth of Nanothin Film Solid Oxide Fuel Cells Toward Cost-Effective Nanostructuring,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 1 pp. 35–39, 2016.CrossRefGoogle Scholar
  31. 31.
    Chang, I., Kim, D., Lee, Y., Hong, S. H., and Cha, S. W., “Effect of Ultra-Thin SnO2 Coating on Pt Catalyst for Energy Applications,” International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 5 pp. 691–694, 2016.CrossRefGoogle Scholar
  32. 32.
    Kim, Y., Noh, S., Cho, G. Y., Park, T., Lee, Y. H., et al., “Characterization of Thin Film Solid Oxide Fuel Cells with Variations in the Thickness of Nickel Oxide-Gadolinia Doped Ceria Anode,” International Journal of Precision Engineering and Manufacturing, vol. 17, no. 8, pp. 1079–1083, 2016.CrossRefGoogle Scholar
  33. 33.
    Yu, W., Lee, Y., Lee, Y. H., Cho, G. Y., Park, T., et al., “Performance Enhancement of Thin Film LSCF Cathodes by Gold Current Collecting Layer,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 3, no. 2, pp. 185–188, 2016.CrossRefGoogle Scholar
  34. 34.
    Shim, J. H., Chao, C., Huang, H., and Prinz, F. B., “Atomic Layer Deposition of Yttria-Stabilized Zirconia for Solid Oxide Fuel Cells,” Chemistry of Materials, vol. 19, no. 15, pp. 3850–3854, 2007.CrossRefGoogle Scholar
  35. 35.
    Shim, J. H., Park, J. S., An, J., Gür, T. M., Kang, S., et al., “Intermediate-Temperature Ceramic Fuel Cells with Thin Film Yttrium-Doped Barium Zirconate Electrolytes,” Chemistry of Materials, vol. 21, no. 14, pp. 3290–3296, 2009.CrossRefGoogle Scholar
  36. 36.
    Park, J.-Y., Yoon, H., and Wachsman, E. D., “Fabrication and Characterization of High-Conductivity Bilayer Electrolytes for Intermediate-Temperature Solid Oxide Fuel Cells,” Journal of the American Ceramic Society, vol. 88, no. 9, pp. 2402–2408, 2005.CrossRefGoogle Scholar
  37. 37.
    Noh, H.-S., Lee, H., Kim, B.-K., Lee, H.-W., Lee, J.-H., et al., “Microstructural Factors of Electrodes Affecting the Performance of Anode-Supported Thin Film Yttria-Stabilized Zirconia Electrolyte (~1 μm) Solid Oxide Fuel Cells,” Journal of Power Sources, vol. 196, no. 17, pp. 7169–7174, 2011.CrossRefGoogle Scholar
  38. 38.
    Paek, J. Y., Chang, I., Park, J. H., Ji, S., and Cha, S. W., “A Study on Properties of Yttrium-Stabilized Zirconia Thin Films Fabricated by Different Deposition Techniques,” Renewable Energy, vol. 65, pp. 202–206, 2014.CrossRefGoogle Scholar
  39. 39.
    Karageorgakis, N. I., Heel, A., Bieberle-Hütter, A., Rupp, J. L. M., Graule, T., et al., “Flame Spray Deposition of La0.6Sr0.4CoO3−δ Thin Films: Microstructural Characterization, Electrochemical Performance and Degradation,” Journal of Power Sources, vol. 195, no. 24, pp. 8152–8161, 2010.CrossRefGoogle Scholar
  40. 40.
    Joo, J. H. and Choi, G. M., “Simple Fabrication of Micro-Solid Oxide Fuel Cell Supported on Metal Substrate,” Journal of Power Sources, vol. 182, no. 2, pp. 589–593, 2008.CrossRefGoogle Scholar
  41. 41.
    Park, S., Vohs, J., and Gorte, R., “Direct Oxidation of Hydrocarbons in a Solid-Oxide Fuel Cell,” Nature, vol. 404, no. 6775, pp. 265–267, 2000.CrossRefGoogle Scholar
  42. 42.
    Infortuna, A., Harvey, A. S., and Gauckler, L. J., “Microstructures of CGO and YSZ Thin Films by Pulsed Laser Deposition,” Advanced Functional Materials, vol. 18, no. 1, pp. 127–135, 2008.CrossRefGoogle Scholar
  43. 43.
    Kwon, C.-W., Son, J.-W., Lee, J.-H., Kim, H.-M., Lee, H.-W., et al., “High-Performance Micro-Solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates,” Advanced Functional Materials, vol. 21, no. 6, pp. 1154–1159, 2011.CrossRefGoogle Scholar
  44. 44.
    Oh, E., Whang, C., Lee, Y., Park, S., Prasad, D. H., et al., “Extremely Thin Bilayer Electrolyte for Solid Oxide Fuel Cells (SOFCs) Fabricated by Chemical Solution Deposition (CSD),” Advanced Materials, vol. 24, no. 25, pp. 3373–3377, 2012.CrossRefGoogle Scholar
  45. 45.
    Ji, S., Chang, I., Lee, Y. H., Park, J., Paek, J. Y., et al., “Fabrication of Low-Temperature Solid Oxide Fuel Cells with a Nanothin Protective Layer by Atomic Layer Deposition,” Nanoscale Reearch Letters, Vol. 8, No. 1, p. 48, 2013.CrossRefGoogle Scholar
  46. 46.
    Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., et al., “High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation,” Journal of The Electrochemical Society, Vol. 154, No. 1, pp. B20–B24, 2007.CrossRefGoogle Scholar
  47. 47.
    Tsuchiya, M., Lai, B.-K., and Ramanathan, S., “Scalable Nanostructured Membranes for Solid-Oxide Fuel Cells,” Nature Nanotechnology, vol. 6, no. 5, pp. 282–286, 2011.CrossRefGoogle Scholar
  48. 48.
    Seshan, K. and Schepis, D., “Handbook of Thin-Film Deposition Processes and Techniques-Principles, Methods, Equipment and Applications,” William Andrew Publishing, 4th Ed., 2002.Google Scholar
  49. 49.
    Mattox, D. M., “Handbook of Physical Vapor Deposition (PVD) Processing,” Elsevier, 2nd Ed., 2010.Google Scholar
  50. 50.
    Pierson, H., “Handbook of Chemical Vapor Deposition: Principles, Technology and Applications,” William Andrew Publishing, 1999.Google Scholar
  51. 51.
    Kääriäinen, T., Cameron, D., Kääriäinen, M. L., and Sherman, A., “Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications,” Wiley, 2nd Ed., 2013.Google Scholar
  52. 52.
    Evans, A., Prestat, M., Tolke, R., Schlupp, M. V. F., Gauckler, L. J., et al., “Residual Stress and Buckling Patterns of Free-Standing Yttria-Stabilized-Zirconia Membranes Fabricated by Pulsed Laser Deposition,” Fuel Cells, vol. 12, no. 4, pp. 614–623, 2012.CrossRefGoogle Scholar
  53. 53.
    Kerman, K., Lai, B. K., and Ramanathan, S., “Pt/Y0.16Zr0.84O1.92/Pt Thin Film Solid Oxide Fuel Cells: Electrode Microstructure and Stability Considerations,” Journal of Power Sources, vol. 196, no. 5, pp. 2608–2614, 2011.CrossRefGoogle Scholar
  54. 54.
    Kerman, K., Lai, B. K., and Ramanathan, S., “Free Standing Oxide Alloy Electrolytes for Low Temperature Thin Film Solid Oxide Fuel Cells,” Journal of Power Sources, vol. 202, pp. 120–125, 2012.CrossRefGoogle Scholar
  55. 55.
    Takagi, Y., Lai, B.-K., Kerman, K., and Ramanathan, S., “Low Temperature Thin Film Solid Oxide Fuel Cells with Nanoporous Ruthenium Anodes for Direct Methane Operation,” Energy Environmental Science, Vol. 4, Article ID: 3473, 2011.Google Scholar
  56. 56.
    Lai, B. K., Kerman, K., and Ramanathan, S., “Methane-Fueled Thin Film Micro-Solid Oxide Fuel Cells with Nanoporous Palladium Anodes,” Journal of Power Sources, vol. 196, no. 15, pp. 6299–6304, 2011.CrossRefGoogle Scholar
  57. 57.
    Lai, B. K., Kerman, K., and Ramanathan, S., “On the Role of Ultra-Thin Oxide Cathode Synthesis on the Functionality of Micro-Solid Oxide Fuel Cells: Structure, Stress Engineering and in Situ Observation of Fuel Cell Membranes during Operation,” Jouranl of Power Sources, vol. 195, no. 16, pp. 5185–5196, 2010.CrossRefGoogle Scholar
  58. 58.
    Lai, B.-K., Xiong, H., Tsuchiya, M., Johnson, A. C., and Ramanathan, S., “Microstructure and Microfabrication Considerations for Self-Supported On-Chip Ultra-Thin Micro-Solid Oxide Fuel Cell Membranes,” Fuel Cells, vol. 9, no. 5, pp. 699–710, 2009.CrossRefGoogle Scholar
  59. 59.
    Kerman, K., Lai, B. K., and Ramanathan, S., “Nanoscale Compositionally Graded Thin-Film Electrolyte Membranes for Low-Temperature Solid Oxide Fuel Cells,” Advanced Energy Materials, vol. 2, no. 5, pp. 656–661, 2012.CrossRefGoogle Scholar
  60. 60.
    Lai, B.-K., Kerman, K., and Ramanathan, S., “Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 (LSCF/YSZ/LSCF) Symmetric Thin Film Solid Oxide Fuel Cells,” Journal of Power Sources, vol. 196, no. 4, pp. 1826–1832, 2011.CrossRefGoogle Scholar
  61. 61.
    Johnson, A. C., Baclig, A., Harburg, D. V., Lai, B. K., and Ramanathan, S., “Fabrication and Electrochemical Performance of Thin-Film Solid Oxide Fuel Cells with Large Area Nanostructured Membranes,” Journal of Power Sources, vol. 195, no. 4, pp. 1149–1155, 2010.CrossRefGoogle Scholar
  62. 62.
    Lai, B. K., Johnson, A. C., Xiong, H., and Ramanathan, S., “Ultra-Thin Nanocrystalline Lanthanum Strontium Cobalt ferrite (La0.6Sr0.4Co0.8Fe0.2O3-δ) Films Synthesis by RF-Sputtering and Temperature-Dependent Conductivity Studies,” Journal of Power Sources, vol. 186, no. 1, pp. 115–122, 2009.CrossRefGoogle Scholar
  63. 63.
    Johnson, A. C., Lai, B. K., Xiong, H., and Ramanathan, S., “An Experimental Investigation into Micro-Fabricated Solid Oxide Fuel Cells with Ultra-Thin La0.6Sr0.4Co0.8Fe0.2O3 Cathodes and Yttria-Doped Zirconia Electrolyte Films,” Journal of Power Sources, vol. 186, no. 2, pp. 252–260, 2009.CrossRefGoogle Scholar
  64. 64.
    Kerman, K., Tallinen, T., Ramanathan, S., and Mahadevan, L., “Elastic Configurations of Self-Supported Oxide Membranes for Fuel Cells,” Journal of Power Sources, vol. 222, pp. 359–366, 2013.CrossRefGoogle Scholar
  65. 65.
    Kim, Y. B., Gür, T. M., Kang, S., Jung, H. J., Sinclair, R., et al., “Crater Patterned 3-D Proton Conducting Ceramic Fuel Cell Architecture with Ultra Thin Y:BaZrO3 Electrolyte,” Electrochemistry Communications, vol. 13, no. 5, pp. 403–406, 2011.CrossRefGoogle Scholar
  66. 66.
    Chao, C.-C., Hsu, C.-M., Cui, Y., and Prinz, F. B., “Improved Solid Oxide Fuel Cell Performance with Nanostructured Electrolytes,” ACS Nano, vol. 5, no. 7, pp. 5692–5696, 2011.CrossRefGoogle Scholar
  67. 67.
    Ji, S., Chang, I., Lee, Y. H., Lee, M. H., and Cha, S. W., “Performance Enhancement of Thin-Film Ceramic Electrolyte Fuel Cell Using Bi-Layered Yttrium-Doped Barium Zirconate,” Thin Solid Films, vol. 539, pp. 117–121, 2013.CrossRefGoogle Scholar
  68. 68.
    Chang, I., Ji, S., Park, J., Lee, M. H., and Cha, S. W., “Ultrathin YSZ Coating on Pt Cathode for High Thermal Stability and Enhanced Oxygen Reduction Reaction Activity,” Advanced Energy Materials, Vol. 5, No. 10, Paper No. 1402251, 2015.Google Scholar
  69. 69.
    Park, J., Paek, J. Y., Chang, I., Ji, S., Cha, S. W., et al., “Pulsed Laser Deposition of Y-Doped BaZrO3 Thin Film as Electrolyte for Low Temperature Solid Oxide Fuel Cells,” CIRP Annals, vol. 62, no. 1, pp. 563–566, 2013.CrossRefGoogle Scholar
  70. 70.
    Park, J., Lee, Y., Chang, I., Lee, W., and Cha, S. W., “Engineering of the Electrode Structure of Thin Film Solid Oxide Fuel Cells,” Thin Solid Films, vol. 584, pp. 125–129, 2015.CrossRefGoogle Scholar
  71. 71.
    Kang, S., Heo, P., Lee, Y. H., Ha, J., Chang, I., et al., “Low Intermediate Temperature Ceramic Fuel Cell with Y-Doped BaZrO3 Electrolyte and Thin Film Pd Anode on Porous Substrate,” Electrochemistry Communicaitons, vol. 13, no. 4, pp. 374–377, 2011.CrossRefGoogle Scholar
  72. 72.
    Ji, S., Cho, G. Y., Yu, W., Su, P. C., Lee, M. H., et al., “Plasma-Enhanced Atomic Layer Deposition of Nanoscale Yttria-Stabilized Zirconia Electrolyte for Solid Oxide Fuel Cells with Porous Substrate,” ACS Applied Materials Interfaces, vol. 7, no. 5, pp. 2998–3002, 2015.CrossRefGoogle Scholar
  73. 73.
    Ji, S., Chang, I., Cho, G. Y., Lee, Y. H., Shim, J. H., et al., “Application of Dense Nano-Thin Platinum Films for Low-Temperature Solid Oxide Fuel Cells by Atomic Layer Deposition,” International Journal of Hydrogen Energy, vol. 39, no. 23, pp. 12402–12408, 2014.CrossRefGoogle Scholar
  74. 74.
    Cho, G. Y., Lee, Y. H., Hong, S. W., Bae, J., An, J., et al., “High-Performance Thin Film Solid Oxide Fuel Cells with Scandia-Stabilized Zirconia (ScSZ) Thin Film Electrolyte,” International Journal of Hydrogen Energy, vol. 40, no. 45, pp. 15704–15708, 2015.CrossRefGoogle Scholar
  75. 75.
    Ji, S., Lee, Y. H., Park, T., Cho, G. Y., Noh, S., et al., “Doped Ceria Anode Interlayer for Low-Temperature Solid Oxide Fuel Cells with Nanothin Electrolyte,” Thin Solid Films, vol. 591, pp. 250–254, 2015.CrossRefGoogle Scholar
  76. 76.
    Chang, I., Bae, J., Park, J., Lee, S., Ban, M., et al., “A Thermally Self-Sustaining Solid Oxide Fuel Cell System at Ultra-Low Operating Temperature (319oC),” Energy, vol. 104, pp. 107–113, 2016.CrossRefGoogle Scholar
  77. 77.
    Cho, G. Y., Noh, S., Lee, Y. H., Ji, S., Hong, S. W., et al., “Properties of Nanostructured Undoped ZrO2 Thin Film Electrolytesby Plasma Enhanced Atomic Layer Depositionfor Thin Film Solid Oxide Fuel Cells,” Journal of Vacuum Science & Technology A, Vol. 34, No. 1, Paper No. 01A151, 2016.Google Scholar
  78. 78.
    Lim, Y., Hong, S., Bae, J., Yang, H., and Kim, Y. B., “Influence of Deposition Temperature on the Microstructure of Thin-Film Electrolyte for SOFCs with a Nanoporous AAO Support Structure,” International Journal of Hydrogen Energy, vol. 42, no. 15, pp. 10199–10207, 2017.CrossRefGoogle Scholar
  79. 79.
    Hong, S., Bae, J., Koo, B., and Kim, Y. B., “High-Performance Ultra-Thin Film Solid Oxide Fuel Cell Using Anodized-Aluminum-Oxide Supporting Structure,” Electrochemistry Communicaitons, vol. 47, pp. 1–4, 2014.CrossRefGoogle Scholar
  80. 80.
    Chang, I., Paek, J. Y., and Cha, S. W., “Parametric Study of YDoped BaZrO3 Thin Film Deposited via Pulsed Laser Deposition,” Journal of Vacuum Science & Technology A, Vol. 33, No. 2, Paper No. 21515, 2015.Google Scholar
  81. 81.
    Plonczak, P., Bieberle-Hütter, A., Søgaard, M., Ryll, T., Martynczuk, J., et al., “Tailoring of LaxSr1-xCoyFe1-yO3-δ Nanostructure by Pulsed Laser Deposition,” Advanced Functtional Materials, vol. 21, no. 14, pp. 2764–2775, 2011.CrossRefGoogle Scholar
  82. 82.
    Kim, S. M., Son, J. W., Lee, K. R., Kim, H., Kim, H. R., et al., “Substrate Effect on the Electrical Properties of Sputtered YSZ Thin Films for Co-Planar SOFC Applications,” Journal of Electroceramics, vol. 24, no. 3, pp. 153–160, 2010.CrossRefGoogle Scholar
  83. 83.
    Noh, H. S., Yoon, K. J., Kim, B. K., Je, H. J., Lee, H. W., et al., “Thermo-Mechanical Stability of Multi-Scale-Architectured Thin-Film-Based Solid Oxide Fuel Cells Assessed by Thermal Cycling Tests,” Jouranl of Power Sources, vol. 249, pp. 125–130, 2014.CrossRefGoogle Scholar
  84. 84.
    Noh, H. S., Yoon, K. J., Kim, B. K., Je, H. J., Lee, H. W., et al., “The Potential and Challenges of Thin-Film Electrolyte and Nanostructured Electrode for Yttria-Stabilized Zirconia-Base Anode-Supported Solid Oxide Fuel Cells,” Journal of Power Sources, vol. 247, pp. 105–111, 2014.CrossRefGoogle Scholar
  85. 85.
    Bae, K., Jang, D. Y., Choi, H. J., Kim, D., Hong, J., et al., “Demonstrating the Potential of Yttrium-Doped Barium Zirconate Electrolyte for High-Performance Fuel Cells,” Nature Communications, Vol. 8, Article No. 14553, 2017.Google Scholar
  86. 86.
    Noh, H.-S., Son, J.-W., Lee, H., Song, H.-S., Lee, H.-W., et al., “Low Temperature Performance Improvement of SOFC with Thin Film Electrolyte and Electrodes Fabricated by Pulsed Laser Deposition,” Journal of the Electrochemical Society, Vol. 156, No. 12 pp. B1484–B1490, 2009.CrossRefGoogle Scholar
  87. 87.
    Noh, H. S., Son, J. W., Lee, H., Ji, H. I., Lee, J. H., et al., “Suppression of Ni Agglomeration in PLD Fabricated Ni-YSZ Composite for Surface Modification of SOFC Anode,” Journal of the European Ceramic Society, vol. 30, no. 16, pp. 3415–3423, 2010.CrossRefGoogle Scholar
  88. 88.
    Bae, K., Lee, S., Jang, D. Y., Kim, H. J., Lee, H., et al., “High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes,” ACS Applid Materials Interfaces, vol. 8, no. 14, pp. 9097–9103, 2016.CrossRefGoogle Scholar
  89. 89.
    Park, J.-H., Hong, W.-S., Kim, G. C., Chang, H. J., Lee, J.-H., et al., “The Effect of Post-Annealing on the Properties of a Pulsed-Laser-Deposited La0.6Sr0.4CoO3-δ-Ce0.9Gd0.1O2-δ Nano-Composite Cathode,” Journal of Electrochemical Society, Vol. 160, No. 9, pp. F1027–F1032, 2013.CrossRefGoogle Scholar
  90. 90.
    Noh, H. S., Park, J. S., Son, J. W., Lee, H., Lee, J. H., et al., “Physical and Microstructural Properties of NiO-and Ni-YSZ Composite Thin Films Fabricated by Pulsed-Laser Deposition at T ≤ 700oC,” Journal of the American Ceramic Society, vol. 92, no. 12, pp. 3059–3064, 2009.CrossRefGoogle Scholar
  91. 91.
    Noh, H. S., Son, J. W., Lee, H., Park, J. S., Lee, H. W., et al., “Direct Applicability of La0.6Sr0.4CoO3-δ Thin Film Cathode to Yttria Stabilised Zirconia Electrolytes at T ≤ 650oC,” Fuel Cells, vol. 10, no. 6, pp. 1057–1065, 2010.CrossRefGoogle Scholar
  92. 92.
    Ishihara, T., Eto, H., and Yan, J., “Intermediate Temperature Solid Oxide Fuel Cells Using LaGaO3 Based Oxide Film Deposited by PLD Method,” International Journal of Hydrogen Energy, vol. 36, no. 2, pp. 1862–1867, 2011.CrossRefGoogle Scholar
  93. 93.
    Su, P. C. and Prinz, F. B., “Nanoscale Membrane Electrolyte Array for Solid Oxide Fuel Cells,” Electrochemistry Communications, vol. 16, no. 1, pp. 77–79, 2012.CrossRefGoogle Scholar
  94. 94.
    Baek, J. D., Yu, C. C., and Su, P. C., “A Silicon-Based Nanothin Film Solid Oxide Fuel Cell Array with Edge Reinforced Support for Enhanced Thermal Mechanical Stability,” Nano Letters, vol. 16, no. 4, pp. 2413–2417, 2016.CrossRefGoogle Scholar
  95. 95.
    Lee, Y. H., Cho, G. Y., Chang, I., Ji, S., Kim, Y. B., et al., “Platinum-Based Nanocomposite Electrodes for Low-Temperature Solid Oxide Fuel Cells with Extended Lifetime,” Journal of Power Sources, vol. 307, pp. 289–296, 2016.CrossRefGoogle Scholar
  96. 96.
    Choi, H. J., Kim, M., Neoh, K. C., Jang, D. Y., Kim, H. J., et al., “High-Performance Silver Cathode Surface Treated with Scandia-Stabilized Zirconia Nanoparticles for Intermediate Temperature Solid Oxide Fuel Cells,” Advanced Energy Materials, DOI: doi:10.1002/aenm.201601956, 2016.Google Scholar
  97. 97.
    Shim, J. H., Jiang, X., Bent, S. F., and Prinz, F. B., “Catalysts with Pt Surface Coating by Atomic Layer Deposition for Solid Oxide Fuel Cells,” Journal of the Electrochemical Society, Vol. 157, No. 6, pp. B793–B797, 2010.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2018

Authors and Affiliations

  1. 1.Center for Energy ResearchUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of Automotive EngineeringWonkwang UniversityJeonrabuk-doRepublic of Korea
  3. 3.Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations