Advertisement

From 3D to 4D printing – design, material and fabrication for multi-functional multi-materials

  • Varsha Khare
  • Sanjiv Sonkaria
  • Gil-Yong Lee
  • Sung-Hoon AhnEmail author
  • Won-Shik ChuEmail author
Regular Paper

Abstract

In the era of multi-dimensional digital printing technology, engineering by multilayered ‘top-down’ methodologies are redefining manufacturing processes at multi-scale levels with atomic precision permitting unprecedented freedom to design complex structures at will. This challenges the current perception of conventional machining processes for unconventional materials (e.g. smart-stimuli responsive materials) that pose limitations in closing the gap between manufacturing processes and the increasing demand for rapid assembly procedures, miniaturized and cost-effective products predicted for emerging industries supplying innovative products to a rising population of end users. Driven by a growing need for customization, printing technologies are dynamically changing to meet the demands of a global market. Here, the conceptualization of 4D printing (4DP) platform and its impact on manufacturing scales and processes are discussed. Further, a ‘new’ conceptual insight into 4DP, high precision material design and the ‘envisioned’ roadmap for 4DP manufacturing is proposed.

Keywords

3D printing 4D printing Geometry Shape responsive material Smart material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wong, K. V. and Hernandez, A., “A Review of Additive Manufacturing,” ISRN Mechanical Engineering, p. 10, 2012.Google Scholar
  2. 2.
    Halterman, T. E., “Where is the 4D Printing Market Headed?-Report Says $555.6M Annually by 2025,” https://3dprint.com/78035/4d-printing-market/ (Accessed 16 JUN 2017)Google Scholar
  3. 3.
    Huang, T. Y., Sakar, M. S., Mao, A., Petruska, A. J., Qiu, F., et al., “3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents,” Advanced Materials, Vol. 27, No. 42, pp. 6644–6650, 2015.CrossRefGoogle Scholar
  4. 4.
    Shida Miao, W. Z., Castro, N. J., Nowicki, M., Zhou, X., Cui, H., et al., “4D Printing Smart Biomedical Scaffolds with Novel Soybean Oil Epoxidized Acrylate,” Scientific Reports, Vol. 6, Paper No. 27226, 2016.Google Scholar
  5. 5.
    Sonkaria, S., Kim, H.-T., Kim, S.-Y., Kumari, N., Kim, Y. G., et al., “Ionic Liquid-Induced Synthesis of a Graphene Intercalated Ferrocene Nanocatalyst and its Environmental Application,” Applied Catalysis B: Environmental, Vol. 182, pp. 326–335, 2016.CrossRefGoogle Scholar
  6. 6.
    Cademartiri, L. and Bishop, K. J., “Programmable Self-Assembly,” Nature Materials, Vol. 14, No. 1, pp. 2–9, 2015.CrossRefGoogle Scholar
  7. 7.
    Ahn, D.-G., “Research Trends of Metallic Sandwich Plates with Single Layer Periodically Repeated Metallic Inner Structures (PRMIS)-Focused on Design, Manufacturing and Formability,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 4, pp. 377–391, 2015.CrossRefGoogle Scholar
  8. 8.
    Ko, H., Moon, S. K., and Hwang, J., “Design for Additive Manufacturing in Customized Products,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2369–2375, 2015.CrossRefGoogle Scholar
  9. 9.
    Ahn, D.-G., “Direct Metal Additive Manufacturing Processes and their Sustainable Applications for Green Technology: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 4, pp. 381–395, 2016.CrossRefGoogle Scholar
  10. 10.
    Abas, Z., Kim, H. S., Zhai, L., and Kim, J., “Experimental Study of Vibrational Energy Harvesting Using Electro-Active Paper,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 6, pp. 1187–1193, 2015.CrossRefGoogle Scholar
  11. 11.
    Bhattacharya, S., Chattaraj, R., Das, M., Patra, A., Bepari, B., et al., “Simultaneous Parametric Optimization of IPMC Actuator for Compliant Gripper,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2289–2297, 2015.CrossRefGoogle Scholar
  12. 12.
    Binh, P. C., Nam, D. N. C., and Ahn, K. K., “Modeling and Experimental Investigation on Dielectric Electro-Active Polymer Generator,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 5, pp. 945–955, 2015.CrossRefGoogle Scholar
  13. 13.
    Choi, E. K., Park, J., Kim, B. S., and Lee, D., “Fabrication of Electrodes and Near-Field Communication Tags Based on Screen Printing of Silver Seed Patterns and Copper Electroless Plating,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 10, pp. 2199–2204, 2015.CrossRefGoogle Scholar
  14. 14.
    Khademzadeh, S., Parvin, N., and Bariani, P. F., “Production of Niti Alloy by Direct Metal Deposition of Mechanically Alloyed Powder Mixtures,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2333–2338, 2015.CrossRefGoogle Scholar
  15. 15.
    Kim, J. E., Kim, H., Yoon, H., Kim, Y. Y., and Youn, B. D., “An Energy Conversion Model for Cantilevered Piezoelectric Vibration Energy Harvesters Using Only Measurable Parameters,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 1, pp. 51–57, 2015.CrossRefGoogle Scholar
  16. 16.
    Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., et al., “Review of Nanocellulose for Sustainable Future Materials,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 197–213, 2015.CrossRefGoogle Scholar
  17. 17.
    Li, J. and Harada, H., “Phase Resistance with Displacement Feedback Control for Thick SMA Actuators,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 1, pp. 81–90, 2015.CrossRefGoogle Scholar
  18. 18.
    Vatani, M., Lu, Y., Engeberg, E. D., and Choi, J.-W., “Combined 3D Printing Technologies and Material for Fabrication of Tactile Sensors,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1375–1383, 2015.CrossRefGoogle Scholar
  19. 19.
    Awan, A. U., Park, J., Kim, H. J., Ryu, J., and Cho, M., “Adaptive Control of a Shape Memory Alloy Actuator Using Neural-Network Feedforward and Rise Feedback,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 4, pp. 409–418, 2016.CrossRefGoogle Scholar
  20. 20.
    Binh, P. C. and Ahn, K. K., “Performance Optimization of Dielectric Electro Active Polymers in Wave Energy Converter Application,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 9, pp. 1175–1185, 2016.CrossRefGoogle Scholar
  21. 21.
    Jayaramudu, T., Li, Y., Ko, H.-U., Shishir, I. R., and Kim, J., “Poly (Acrylic Acid)-Poly (Vinyl Alcohol) Hydrogels for Reconfigurable Lens Actuators,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 4, pp. 375–379, 2016.CrossRefGoogle Scholar
  22. 22.
    Park, J.-H., Lim, T.-W., Kim, S.-D., and Park, S.-H., “Design and Experimental Verification of Flexible Plate-Type Piezoelectric Vibrator for Energy Harvesting System,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 3, pp. 253–259, 2016.CrossRefGoogle Scholar
  23. 23.
    Suh, Y. D., Hong, S., Kim, G., Hwang, K.-I., Choi, J.-H., et al., “Selective Electro-Thermal Growth of Zinc Oxide Nanowire on Photolithographically Patterned Electrode for Microsensor Applications,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 173–177, 2016.CrossRefGoogle Scholar
  24. 24.
    Kozlovskaya, V., Xue, B., and Kharlampieva, E., “Shape-Adaptable Polymeric Particles for Controlled Delivery,” Macromolecules, Vol. 49, No. 22, pp. 8373–8386, 2016.CrossRefGoogle Scholar
  25. 25.
    Bodaghi, M., Damanpack, A., and Liao, W., “Self-Expanding/Shrinking Structures by 4D Printing,” Smart Materials and Structures, Vol. 25, No. 10, Paper No. 105034, 2016.Google Scholar
  26. 26.
    Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., et al., “Hybrid Manufacturing in Micro/Nano Scale: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 75–92, 2014.CrossRefGoogle Scholar
  27. 27.
    Boles, M. A., Ling, D., Hyeon, T., and Talapin, D. V., “The Surface Science of Nanocrystals,” Nature Materials, Vol. 15, No. 2, pp. 141–153, 2016.CrossRefGoogle Scholar
  28. 28.
    Editorial, “The Rise of Quantum Materials,” Nature Physics, Vol. 12, No. 2, p. 105, 2016.CrossRefGoogle Scholar
  29. 29.
    Turner, A. P., “Biosensors: Sense and Sensibility,” Chemical Society Reviews, Vol. 42, No. 8, pp. 3184–3196, 2013.CrossRefGoogle Scholar
  30. 30.
    Selvan, K. V. and Ali, M. S. M., “Micro-Scale Energy Harvesting Devices: Review of Methodological Performances in the Last Decade,” Renewable and Sustainable Energy Reviews, Vol. 54, pp. 1035–1047, 2016.CrossRefGoogle Scholar
  31. 31.
    Park, S.-I., Quan, Y.-J., Kim, S.-H., Kim, H., Kim, S., et al., “A Review on Fabrication Processes for Electrochromic Devices,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 4, pp. 397–421, 2016.CrossRefGoogle Scholar
  32. 32.
    Teizer, J., Blickle, A., King, T., Leitzbach, O., and Guenther, D., “Large Scale 3D Printing of Complex Geometric Shapes in Construction,” Proc. of the International Symposium on Automation and Robotics in Construction, 2016.Google Scholar
  33. 33.
    Aejmelaeus-Lindström, P., Willmann, J., Tibbits, S., Gramazio, F., and Kohler, M., “Jammed Architectural Structures: Towards Large-Scale Reversible Construction,” Granular Matter, Vol. 18, No. 2, pp. 1–12, 2016.CrossRefGoogle Scholar
  34. 34.
    Willmann, J., Gramazio, F., Kohler, M., and Langenberg, S., “Digital by Material,” in: Rob|Arch: Robotic Fabrication in Architecture, Art, and Design, Brell-Cokcan, S., and Braumann, J., (Eds.), Springer Vienna, pp. 12–27, 2013.Google Scholar
  35. 35.
    Lloret Kristensen, E., Gramazio, F., Kohler, M., and Langenberg, S., “Complex Concrete Constructions-Merging Existing Casting Techniques with Digital Fabrication,” Proc. of the 18th International Conference on Computer-Aided Architectural Design Research in Asia, pp. 613–622, 2013.Google Scholar
  36. 36.
    Honda, W., Harada, S., Arie, T., Akita, S., and Takei, K., “Wearable, Human-Interactive, Health-Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques,” Advanced Functional Materials, Vol. 24, No. 22, pp. 3299–3304, 2014.CrossRefGoogle Scholar
  37. 37.
    Kitson, P. J., Rosnes, M. H., Sans, V., Dragone, V., and Cronin, L., “Configurable 3D-Printed Millifluidic and Microfluidic ‘Lab on a Chip’ Reactionware Devices,” Lab on a Chip, Vol. 12, No. 18, pp. 3267–3271, 2012.CrossRefGoogle Scholar
  38. 38.
    Lee, M. P., Cooper, G. J., Hinkley, T., Gibson, G. M., Padgett, M. J., et al., “Development of a 3D Printer Using Scanning Projection Stereolithography,” Scientific Reports, Vol. 5, Article No. 9875, 2015.Google Scholar
  39. 39.
    Na, J. H., Evans, A. A., Bae, J., Chiappelli, M. C., Santangelo, C. D., et al., “Programming Reversibly Self-Folding Origami with Micropatterned Photo-Crosslinkable Polymer Trilayers,” Advanced Materials, Vol. 27, No. 1, pp. 79–85, 2015.CrossRefGoogle Scholar
  40. 40.
    Kong, Y. L., Tamargo, I. A., Kim, H., Johnson, B. N., Gupta, M. K., et al., “3D Printed Quantum Dot Light-Emitting Diodes,” Nano Letters, Vol. 14, No. 12, pp. 7017–7023, 2014.CrossRefGoogle Scholar
  41. 41.
    Zhou, Y., Huang, W. M., Kang, S. F., Wu, X. L., Lu, H. B., et al., “From 3D to 4D Printing: Approaches and Typical Applications,” Journal of Mechanical Science and Technology, Vol. 29, No. 10, pp. 4281–4288, 2015.CrossRefGoogle Scholar
  42. 42.
    Rodrigue, H., Bhandari, B., Wang, W., and Ahn, S.-H., “3D Soft Lithography: A Fabrication Process for Thermocurable Polymers,” Journal of Materials Processing Technology, Vol. 217, pp. 302–309, 2015.CrossRefGoogle Scholar
  43. 43.
    Rodrigue, H., Wang, W., Bhandari, B., Han, M.-W., and Ahn, S.-H., “Cross-Shaped Twisting Structure Using SMA-Based Smart Soft Composite,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 2, pp. 153–156, 2014.CrossRefGoogle Scholar
  44. 44.
    Song, S.-H., Lee, H., Lee, J.-G., Lee, J.-Y., Cho, M., et al., “Design and Analysis of a Smart Soft Composite Structure for Various Modes of actuation,” Composites Part B: Engineering, Vol. 95, pp. 155–165, 2016.CrossRefGoogle Scholar
  45. 45.
    Niesler, F. and Hermatschweiler, M., “Additive Manufacturing of Micro-Sized Parts,” Laser Technik Journal, Vol. 11, No. 5, pp. 16–18, 2014.CrossRefGoogle Scholar
  46. 46.
    Jeon, S., Malyarchuk, V., Rogers, J. A., and Wiederrecht, G. P., “Fabricating Three Dimensional Nanostructures Using Two Photon Lithography in a Single Exposure Step,” Optics Express, Vol. 14, No. 6, pp. 2300–2308, 2006.CrossRefGoogle Scholar
  47. 47.
    Sonkaria, S., Ahn, S. H., Lee, C. S., and Khare, V., “‘On the Dot’-the Timing of Self-Assembled Growth to the Quantum Scale,” Chemistry-A European Journal, DOI: 10.1002/chem.201604994, 2017.Google Scholar
  48. 48.
    Lee, G.-Y., Park, J.-I., Kim, C.-S., Yoon, H.-S., Yang, J., et al., “Aerodynamically Focused Nanoparticle (AFN) Printing: Novel Direct Printing Technique of Solvent-Free and Inorganic Nanoparticles,” ACS Applied Materials & Interfaces, Vol. 6, No. 19, pp. 16466–16471, 2014.CrossRefGoogle Scholar
  49. 49.
    Ahn, S.-H., Yoon, H.-S., Jang, K.-H., Kim, E.-S., Lee, H.-T., et al., “Nanoscale 3D Printing Process Using Aerodynamically Focused Nanoparticle (AFN) Printing, Micro-Machining, and Focused Ion Beam (FIB),” CIRP Annals-Manufacturing Technology, Vol. 64, No. 1, pp. 523–526, 2015.CrossRefGoogle Scholar
  50. 50.
    Ge, Q., Sakhaei, A. H., Lee, H., Dunn, C. K., Fang, N. X., et al., “Multimaterial 4D Printing with Tailorable Shape Memory Polymers,” Scientific Reports, Vol. 6, Article No. 31110, 2016.Google Scholar
  51. 51.
    Tibbits, S., “4D Printing: Multi-Material Shape Change,” Architectural Design, Vol. 84, No. 1, pp. 116–121, 2014.CrossRefGoogle Scholar
  52. 52.
    Thérien-Aubin, H. L., Wu, Z. L., Nie, Z., and Kumacheva, E., “Multiple Shape Transformations of Composite Hydrogel Sheets,” Journal of the American Chemical Society, Vol. 135, No. 12, pp. 4834–4839, 2013.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2017

Authors and Affiliations

  1. 1.Institute of Advanced Machines and DesignSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulSouth Korea
  3. 3.Graduate School of Engineering PracticeSeoul National UniversitySeoulSouth Korea

Personalised recommendations