Dry metal forming: Definition, chances and challenges

  • Frank Vollertsen
  • Florian Schmidt
Short Communication


In metal forming, lubricants are still used to prevent corrosion, to reduce friction, wear and tool load as well as to protect the workpieces and intermediates. In economic and ecological points of view, the challenge is the avoidance of lubricant usage. Within this article we define the term of dry metal forming, a technology which contributes an approach to establish green technology in mass production. Regarding this, the benefits of this technology are shown. Three different approaches exist to achieve a dry forming process: ceramic tools, self-lubricating coating systems and hard material coatings. Concerning this matter, the state of research in dry metal forming is reviewed within this paper.


Dry metal forming Avoidance of lubricants Self-lubricating coating systems Hard material coatings Sustainable metal forming 


  1. 1.
    Deutsches Institut Fur Normung E.V., “MQL Processing Technology — Part 1: Terms and Definitions,” GER Patent, No. DIN 69090-1, 2011.Google Scholar
  2. 2.
    Weihnacht, V., Brückner, A., and Bräunling, S., “ta-C Beschichtete Werkzeuge für die Trockenumformung von Aluminiumblechen,” Vakuum in Forschung und Praxis, Vol. 20, No. 3, pp. 6–10, 2008.CrossRefGoogle Scholar
  3. 3.
    Abele, E., Feickert, S., and Weigold, M., “Symposium zum Thema Innovative Zerspanung — Effizient und Umweltgerecht,” TU Darmstadt, Inst. f. Technologie und Werkzeugmaschinen, pp. 4–6, 2004.Google Scholar
  4. 4.
    Tamaoki, K., Manabe, K., Kataoka, S., and Aizawa, T., “Electroconductive Ceramic Tooling for Dry Deep Drawing,” Journal of Materials Processing Technology, Vol. 210, No. 1, pp. 48–53, 2010.CrossRefGoogle Scholar
  5. 5.
    Mitsuo, A., Akhadejdamrong, T., and Aizawa, T., “Self-Lubrication of Cl-Implanted Titanium Nitride Coating for Dry Metal Forming,” Materials Transactions, Vol. 44, No. 7, pp. 1295–1302, 2003.CrossRefGoogle Scholar
  6. 6.
    Koshy, R. A., Graham, M. E., and Marks, L.D., “Temperature Activated Self-Lubrication in CrN/Mo2N N Nanolayer Coatings,” Surface and Coatings Technology, Vol. 204, No. 9, pp. 1359–1365, 2010.CrossRefGoogle Scholar
  7. 7.
    Bakhshi-Jooybari, M., “A theoretical and Experimental Study of Friction in Metal Forming by the Use of the Forward Extrusion Process,” Journal of materials processing technology, Vol. 125, pp. 369–374, 2002.CrossRefGoogle Scholar
  8. 8.
    Franklin, S. and Beuger, J., “A Comparison of the Tribological Behaviour of Several Wear-Resistant Coatings,” Surface and Coatings Technology, Vol. 54, No. pp. 459–465, 1992.CrossRefGoogle Scholar
  9. 9.
    Knotek, O., Lugscheider, E., Barimani, C., and Möller, M., “PVD Coatings for Lubricant-Free Tribological Applications,” Wear, Vol. 209, No. 1–2, pp. 101–105, 1997.CrossRefGoogle Scholar
  10. 10.
    Podgornik, B. and Hogmark, S., “Surface Modification to Improve Friction and Galling Properties of Forming Tools,” Journal of Materials Processing Technology, Vol. 174, No. 1, pp. 334–341, 2006.CrossRefGoogle Scholar
  11. 11.
    Taube, K., Grischke, M., and Bewilogua, K., “Improvement of Carbon-Based Coatings for Use in the Cold Forming of Non-Ferrous Metals,” Surface and Coatings Technology, Vol. 68–69, pp. 662–668, 1994.CrossRefGoogle Scholar
  12. 12.
    Hirvonen, J. P., Koskinen, J., Jervis, J. R., and Nastasi, M., “Present Progress in the Development of Low Friction Coatings,” Surface and Coatings Technology, Vol. 80, No. 1–2, pp. 139–150, 1996.CrossRefGoogle Scholar
  13. 13.
    Reisel, G., Steinhäuser, S., and Wielage, B., “The Behaviour of DLC Under High Mechanical and Thermal Load,” Diamond and Related Materials, Vol. 13, No. 4–8, pp. 1516–1520, 2004.CrossRefGoogle Scholar
  14. 14.
    Löhr, M., Spaltmann, D., Binkowski, S., Santner, E., and Woydt, M., “In situ Acoustic Emission for Wear Life Detection of DLC Coatings During Slip-Rolling Friction,” Wear, Vol. 260, No. 4–5, pp. 469–478, 2006.CrossRefGoogle Scholar
  15. 15.
    Wielage, B., Wank, A., Rupprecht, C., Schmidt, G., and Stark, S., “Schichtentwicklung für die schmiermittelfreie Umformung von hochfesten Aluminiumwerkstoffen,” Materialwissenschaft und Werkstofftechnik, Vol. 39, No. 12, pp. 871–875, 2008.CrossRefGoogle Scholar
  16. 16.
    Wank, A., Reisel, G., and Wielage, B., “Behavior of DLC Coatings in Lubricant Free Cold Massive Forming of Aluminum,” Surface and Coatings Technology, Vol. 201, No. 3–4, pp. 822–827, 2006.CrossRefGoogle Scholar
  17. 17.
    Pan, G., Guo, Q., Zhao, Z., Wang, S., Qin, Y., and Wang, L., “Tribological Properties of Solid Multilayer Composite Coatings in Dry Rolling Contact,” Tribology International, Vol. 44, No. 7–8, pp. 789–796, 2011.CrossRefGoogle Scholar
  18. 18.
    Nishimura, T., Sato, T., and Tada, Y., “Evaluation of Frictional Conditions for Various Tool Materials and Lubricants using the Injection-Upsetting Method,” Journal of Materials Processing Technology, Vol. 53, No. 3–4, pp. 726–735, 1995.CrossRefGoogle Scholar
  19. 19.
    Alsmann, M. and Behrens, B. A., “Gebrauchs- und Verarbeitungseigenschaften von Organisch Vorbeschichteten Feinblechen fur die Automobilindustrie,” Tagungsband zum Industriekolloquium Fertigen in Feinblech, Clausthal-Zellerfeld, pp. 66-70, 1998.Google Scholar
  20. 20.
    Carlsson, P. and Olsson, M., “PVD Coatings for Sheet Metal Forming Processes — a Tribological Evaluation,” Surface and Coatings Technology, Vol. 200, No. 14, pp. 4654–4663, 2006.CrossRefGoogle Scholar
  21. 21.
    Osakada, K. and Matsumoto, R., “Fundamental Study of Dry Metal Forming with Coated Tools,” CIRP Annals-Manufacturing Technology, Vol. 49, No. 1, pp. 161–164, 2000.CrossRefGoogle Scholar
  22. 22.
    Murakawa, M., Koga, N., and Kumagai, T., “Deep-drawing of Aluminum Sheets without Lubricant by Use of Diamond-Like Carbon Coated Dies,” Surface and Coatings Technology, Vol. 76-77, No. 2, pp. 553–558, 1995.Google Scholar
  23. 23.
    Tallant, D. R., Parmeter, J. E., Siegal, M. P., and Simpson, R. L., “The Thermal Stability of Diamond-Like Carbon,” Diamond and Related Materials, Vol. 4, No. 3, pp. 191–199, 1995.CrossRefGoogle Scholar
  24. 24.
    Reisel, G., Wielage, B., Steinhäuser, S., and Hartwig, H., “DLC for Tools Protection in Warm Massive Forming,” Diamond and Related Materials, Vol. 12, No. 3–7, pp. 1024–1029, 2003.CrossRefGoogle Scholar
  25. 25.
    Taube, K., “Carbon-based Coatings for Dry Sheet-Metal Working,” Surface and Coatings Technology, Vol. 98, No. 1–3, pp. 976–984, 1998.CrossRefGoogle Scholar
  26. 26.
    Kataoka, S., Murakawa, M., Aizawa, T., and Ike, H., “Tribology of Dry Deep-Drawing of Various Metal Sheets with Use of Ceramics Tools,” Surface and Coatings Technology, Vol. 177-178, pp. 582–590, 2004.CrossRefGoogle Scholar
  27. 27.
    Tamaoki, K., Manabe, K. I., Kataoka, S., and Aizawa, T., “Electroconductive Ceramic Tooling for Dry Deep Drawing,” Journal of Materials Processing Technology, Vol. 210, No. 1, pp. 48–53, 2010.CrossRefGoogle Scholar
  28. 28.
    Groche, P. and Nitzsche, G., “Temperatureinfluss auf den Adhäsionsverschleiβ beim Umformen von Aluminiumblechen,” Materialwissenschaft und Werkstofftechnik, Vol. 35, No. 7, pp. 461–466, 2004.CrossRefGoogle Scholar
  29. 29.
    Elsen, A. and Groche, P., “Adhesive Wear in Dry Sliding of Aluminum,” Proc. of the 16th International Symposium on Plasticity and its Current Applications, 2010.Google Scholar
  30. 30.
    Frank, C., “Kunststoff als Werkzeugwerkstoff für das Tiefziehen von Feinblechen,” Dissertation, Fachbereich Maschinenbau der Universitat Hannover, pp. 2–124, 1999.Google Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.BIAS-Bremer Institut für angewandte Strahltechnik GmbHBremenGermany

Personalised recommendations