Advertisement

Current Sleep Medicine Reports

, Volume 4, Issue 1, pp 50–57 | Cite as

Sleep and Circadian Alterations and the Gut Microbiome: Associations or Causality?

  • Núria FarréEmail author
  • Marta Torres
  • David Gozal
  • Ramon Farré
Sleep and 3D (Cancer, Cardiovascular, Metabolic Diseases) (D Gozal, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Sleep and 3D (Cancer, Cardiovascular, Metabolic Diseases)

Abstract

Purpose of Review

This short review is aimed at presenting the most recent literature investigating the potential causal links between alterations in sleep/circadian cycle and changes in the gut microbiota.

Recent Findings

Data in mice and humans indicate that sleep disturbances modify the gut microbiota and that pre/probiotic-induced alterations of the microbiota disrupt sleep architecture. Moreover, data in rodents and preliminary results in humans indicate that by either environmentally altering the light/dark cycle or by genetically modifying the circadian system, alterations in gut microbiota will occur. Furthermore, bidirectional interactions between the circadian and hypoxic response systems have emerged, suggesting that the circadian clock could protect against heart attacks.

Summary

Taken together, the current and still scarce cumulative evidence clearly reinforces the concept that improved understanding of the role played by the gut microbiome in sleep diseases may potentially contribute to devising future treatments of sleep disorders via targeted restoration of the microbiota.

Keywords

Sleep breathing disorders Shift sleep Light/dark cycle Sleep diseases Host-microbiota interaction Gut microbiota pathophysiology 

Notes

Funding Information

This work was supported in part by the Spanish Ministry of Economy and Competitiveness (Instituto de Salud Carlos III; FIS-PI14/00004, FIS-PI14/00280). This work was partially funded by the CERCA Programme of Generalitat de Catalunya. DG is supported by National Institutes of Health grants HL130984 and NS034939 and the Herbert T. Abelson Chair in Pediatrics.

Compliance with Ethical Standards

Conflict of Interest

Núria Farré, Marta Torres, David Gozal, and Ramon Farré declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70.  https://doi.org/10.1016/j.cell.2012.01.035.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    • Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, et al. Human gut microbiota: toward an ecology of disease. Front Microbiol. 2017;8:1265.  https://doi.org/10.3389/fmicb.2017.01265. This manuscript describes the web of interactions between the human host and its gut microbiota. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–36.  https://doi.org/10.1042/BCJ20160510.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reynolds AC, Paterson JL, Ferguson SA, Stanley D, Wright KP, Dawson D. The shift work and health research agenda: considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep Med Rev. 2017;34:3–9.  https://doi.org/10.1016/j.smrv.2016.06.009.CrossRefPubMedGoogle Scholar
  5. 5.
    Mu C, Yang Y, Zhu W. Gut microbiota: the brain peacekeeper. Front Microbiol. 2016;7:345.PubMedPubMedCentralGoogle Scholar
  6. 6.
    • Benedict C, Vogel H, Jonas W, Woting A, Blaut M, Schürmann A, et al. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Mol Metab. 2016;5(12):1175–86.  https://doi.org/10.1016/j.molmet.2016.10.003. This work shows for the first time that even a short period of sleep deprivation period (2 nights) remodels the gut microbiota in healthy humans. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liang X, Bushman FD, FitzGerald GA. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci U S A. 2015;112(33):10479–84.  https://doi.org/10.1073/pnas.1501305112.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Valencia-Flores, Bliwise, Guilleminault, Rhoads, Clerk. Gender differences in sleep architecture in sleep apnoea syndrome. J Sleep Res. 1992;1(1):51–3.  https://doi.org/10.1111/j.1365-2869.1992.tb00009.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Ware JC, McBrayer RH, Scott JA. Influence of sex and age on duration and frequency of sleep apnea events. Sleep. 2000;23(2):165–70.CrossRefPubMedGoogle Scholar
  10. 10.
    O’Connor C, Thornley KS, Hanly PJ. Gender differences in the polysomnographic features of obstructive sleep apnea. Am J Respir Crit Care Med. 2000;161(5):1465–72.  https://doi.org/10.1164/ajrccm.161.5.9904121.CrossRefPubMedGoogle Scholar
  11. 11.
    Basoglu OK, Tasbakan MS. Gender differences in clinical and polysomnographic features of obstructive sleep apnea: a clinical study of 2827 patients. Sleep Breath. 2017;  https://doi.org/10.1007/s11325-017-1482-9.
  12. 12.
    •• Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514–29.  https://doi.org/10.1016/j.cell.2014.09.048. Data in this study suggest that a functional circadian clock in the host is required for the generation of diurnal fluctuations in the composition and function of the intestinal microbiota. CrossRefPubMedGoogle Scholar
  13. 13.
    Thaiss CA, Levy M, Korem T, Dohnalová L, Shapiro H, Jaitin DA, et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell. 2016;167(6):1495–1510.e12.  https://doi.org/10.1016/j.cell.2016.11.003.CrossRefPubMedGoogle Scholar
  14. 14.
    •• Poroyko VA, Carreras A, Khalyfa A, Khalyfa AA, Leone V, Peris E, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6(1):35405.  https://doi.org/10.1038/srep35405. This animal model study provides novel findings on the effects of chronic sleep fragmentation on gut microbiota. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17(5):681–9.  https://doi.org/10.1016/j.chom.2015.03.006.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Miyazaki K, Itoh N, Yamamoto S, Higo-Yamamoto S, Nakakita Y, Kaneda H, et al. Dietary heat-killed lactobacillus brevis SBC8803 promotes voluntary wheel-running and affects sleep rhythms in mice. Life Sci. 2014;111(1-2):47–52.  https://doi.org/10.1016/j.lfs.2014.07.009.CrossRefPubMedGoogle Scholar
  17. 17.
    Nakakita Y, Tsuchimoto N, Takata Y, Nakamura T. Effect of dietary heat-killed Lactobacillus brevis SBC8803 (SBL88TM) on sleep: a non-randomised, double blind, placebo-controlled, and crossover pilot study. Benefic Microbes. 2016;7(4):501–9.  https://doi.org/10.3920/BM2015.0118.CrossRefGoogle Scholar
  18. 18.
    • Thompson RS, Roller R, Mika A, Greenwood BN, Knight R, Chichlowski M, et al. Dietary prebiotics and bioactive milk fractions improve NREM sleep, enhance REM sleep rebound and attenuate the stress-induced decrease in diurnal temperature and gut microbial alpha diversity. Front Behav Neurosci. 2017;10:240. This study strongly suggests that alterations in gut microbiota may elicit changes in sleep architecture. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pham VT, Lacroix C, Braegger CP, Chassard C. Lactate-utilizing community is associated with gut microbiota dysbiosis in colicky infants. Sci Rep. 2017;7(1):11176.  https://doi.org/10.1038/s41598-017-11509-1.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wegh CAM, Schoterman MHC, Vaughan EE, Belzer C, Benninga MA. The effect of fiber and prebiotics on children’s gastrointestinal disorders and microbiome. Expert Rev Gastroenterol Hepatol. 2017;11:1–15.CrossRefGoogle Scholar
  21. 21.
    Abrahamsson TR, Wu RY, Sherman PM. Microbiota in functional gastrointestinal disorders in infancy: implications for management. Nestle Nutr Inst Workshop Ser. 2017;88:107–15.  https://doi.org/10.1159/000455219.CrossRefPubMedGoogle Scholar
  22. 22.
    Pärtty A, Kalliomäki M. Infant colic is still a mysterious disorder of the microbiota-gut-brain axis. Acta Paediatr. 2017;106(4):528–9.  https://doi.org/10.1111/apa.13754.CrossRefPubMedGoogle Scholar
  23. 23.
    • Cohen LJ, Esterhazy D, Kim S-H, Lemetre C, Aguilar RR, Gordon EA, et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature. 2017;549(7670):48–53.  https://doi.org/10.1038/nature23874. This study showed that commensal bacteria make GPCR ligands that mimic human signaling molecules, thus allowing communication with gastrointestinal tract cells. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    • Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P, Vitaterna MH, et al. Circadian disorganization alters intestinal microbiota. PLoS One. 2014;9(5):e97500.  https://doi.org/10.1371/journal.pone.0097500. This work shows that circadian disorganization (weekly phase reversals of the light/dark cycle) has an impact on the intestinal microbiota. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bishehsari F, Saadalla A, Khazaie K, Engen P, Voigt R, Shetuni B, et al. Light/dark shifting promotes alcohol-induced colon carcinogenesis: possible role of intestinal inflammatory milieu and microbiota. Int J Mol Sci. 2016;17(12):2017.  https://doi.org/10.3390/ijms17122017.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Bass J. Circadian topology of metabolism. Nature. 2012;491(7424):348–56.  https://doi.org/10.1038/nature11704.CrossRefPubMedGoogle Scholar
  27. 27.
    Voigt RM, Summa KC, Forsyth CB, Green SJ, Engen P, Naqib A, et al. The circadian clock mutation promotes intestinal dysbiosis. Alcohol Clin Exp Res. 2016;40(2):335–47.  https://doi.org/10.1111/acer.12943.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Thaiss CA, Zeevi D, Levy M, Segal E, Elinav E. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes. 2015;6(2):137–42.  https://doi.org/10.1080/19490976.2015.1016690.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science. 2017;357(6354):912–6.  https://doi.org/10.1126/science.aan0677.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Adamovich Y, Ladeuix B, Golik M, Koeners MP, Asher G. Rhythmic oxygen levels reset circadian clocks through HIF1α. Cell Metab. 2017;25(1):93–101.  https://doi.org/10.1016/j.cmet.2016.09.014.CrossRefPubMedGoogle Scholar
  31. 31.
    •• Wu Y, Tang D, Liu N, Xiong W, Huang H, Li Y, et al. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab. 2017;25(1):73–85.  https://doi.org/10.1016/j.cmet.2016.09.009. The authors report that the hypoxic response is gated by the circadian clock, proving that a hypoxia-clock reciprocal regulation occurs at the genomic level. CrossRefPubMedGoogle Scholar
  32. 32.
    Fabbian F, Bhatia S, De Giorgi A, Maietti E, Bhatia S, Shanbhag A, et al. Circadian periodicity of ischemic heart disease. Heart Fail Clin. 2017;13(4):673–80.  https://doi.org/10.1016/j.hfc.2017.05.003.CrossRefPubMedGoogle Scholar
  33. 33.
    Nagarajan V, Fonarow GC, Ju C, Pencina M, Laskey WK, Maddox TM, et al. Seasonal and circadian variations of acute myocardial infarction: findings from the get with the guidelines–coronary artery disease (GWTG-CAD) program. Am Heart J. 2017;189:85–93.  https://doi.org/10.1016/j.ahj.2017.04.002.CrossRefPubMedGoogle Scholar
  34. 34.
    Raj K, Bhatia R, Prasad K, Padma Srivastava MV, Vishnubhatla S, Singh MB. Seasonal differences and circadian variation in stroke occurrence and stroke subtypes. J Stroke Cerebrovasc Dis. 2015;24(1):10–6.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.07.051.CrossRefPubMedGoogle Scholar
  35. 35.
    Ripamonti L, Riva R, Maioli F, Zenesini C, Procaccianti G. Daily variation in the occurrence of different subtypes of stroke. Stroke Res Treat. 2017;2017:1–12.  https://doi.org/10.1155/2017/9091250.CrossRefGoogle Scholar
  36. 36.
    Fournier S, Iten L, Marques-Vidal P, Boulat O, Bardy D, Beggah A, et al. Circadian rhythm of blood cardiac troponin T concentration. Clin Res Cardiol. 2017;106(12):1026–32.  https://doi.org/10.1007/s00392-017-1152-8.CrossRefPubMedGoogle Scholar
  37. 37.
    Alibhai FJ, Tsimakouridze EV, Chinnappareddy N, Wright DC, Billia F, O’Sullivan ML, et al. Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ Res. 2014;114(11):1713–22.  https://doi.org/10.1161/CIRCRESAHA.114.302995.CrossRefPubMedGoogle Scholar
  38. 38.
    Vetter C, Devore EE, Wegrzyn LR, Massa J, Speizer FE, Kawachi I, et al. Association between rotating night shift work and risk of coronary heart disease among women. JAMA. 2016;315(16):1726–34.  https://doi.org/10.1001/jama.2016.4454.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Vyas MV, Garg AX, Iansavichus AV, Costella J, Donner A, Laugsand LE, et al. Shift work and vascular events: systematic review and meta-analysis. BMJ. 2012;345(jul26 1):e4800.  https://doi.org/10.1136/bmj.e4800.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Steffens S, Winter C, Schloss MJ, Hidalgo A, Weber C, Soehnlein O. Circadian control of inflammatory processes in atherosclerosis and its complications highlights. Arterioscler Thromb Vasc Biol. 2017;37(6):1022–8.  https://doi.org/10.1161/ATVBAHA.117.309374.CrossRefPubMedGoogle Scholar
  41. 41.
    Takeda N, Maemura K. Circadian clock and the onset of cardiovascular events. Hypertens Res. 2016;39(6):383–90.  https://doi.org/10.1038/hr.2016.9.CrossRefPubMedGoogle Scholar
  42. 42.
    Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183–96.  https://doi.org/10.1161/CIRCRESAHA.117.309715.
  43. 43.
    Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia—revisited—the bad ugly and good: implications to the heart and brain. Sleep Med Rev. 2015;20:27–45.  https://doi.org/10.1016/j.smrv.2014.07.003.CrossRefPubMedGoogle Scholar
  44. 44.
    Lavie L. Oxidative stress inflammation and endothelial dysfunction in obstructive sleep apnea. Front Biosci (Elite Ed). 2012;4:1391–403.CrossRefGoogle Scholar
  45. 45.
    Lévy P, Ryan S, Oldenburg O, Parati G. Sleep apnoea and the heart. Eur Respir Rev. 2013;22(129):333–52.  https://doi.org/10.1183/09059180.00004513.CrossRefPubMedGoogle Scholar
  46. 46.
    Almendros I, Wang Y, Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia. Am J Phys Lung Cell Mol Phys. 2014;307(2):L129–40.  https://doi.org/10.1152/ajplung.00089.2014.Google Scholar
  47. 47.
    Marques FZ, Nelson E, Chu P-Y, Horlock D, Fiedler A, Ziemann M, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964–77.  https://doi.org/10.1161/CIRCULATIONAHA.116.024545.CrossRefPubMedGoogle Scholar
  48. 48.
    Alibhai FJ, LaMarre J, Reitz CJ, Tsimakouridze EV, Kroetsch JT, Bolz S-S, et al. Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J Mol Cell Cardiol. 2017;105:24–37.  https://doi.org/10.1016/j.yjmcc.2017.01.008.CrossRefPubMedGoogle Scholar
  49. 49.
    Parati G, Lombardi C, Castagna F, Mattaliano P, Filardi PP, Agostoni P, et al. Heart failure and sleep disorders. Nat Rev Cardiol. 2016;13(7):389–403.  https://doi.org/10.1038/nrcardio.2016.71.CrossRefPubMedGoogle Scholar
  50. 50.
    Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol. 2017;69(7):841–58.  https://doi.org/10.1016/j.jacc.2016.11.069.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Núria Farré
    • 1
    • 2
    • 3
    Email author
  • Marta Torres
    • 4
    • 5
  • David Gozal
    • 6
  • Ramon Farré
    • 5
    • 7
    • 8
  1. 1.Heart Failure Unit, Department of CardiologyHospital del MarBarcelonaSpain
  2. 2.Heart Diseases Biomedical Research GroupIMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
  3. 3.Department of MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Department of PneumologyHospital Clinic BarcelonaBarcelonaSpain
  5. 5.CIBER de Enfermedades RespiratoriasMadridSpain
  6. 6.Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences DivisionThe University of ChicagoChicagoUSA
  7. 7.Unitat Biofísica i Bioenginyeria, Facultat de MedicinaUniversitat de BarcelonaBarcelonaSpain
  8. 8.Institut Investigacions Biomediques August Pi SunyerBarcelonaSpain

Personalised recommendations