Current Sleep Medicine Reports

, Volume 3, Issue 2, pp 104–112 | Cite as

Shift Work: Disrupted Circadian Rhythms and Sleep—Implications for Health and Well-being

  • Stephen M. James
  • Kimberly A. Honn
  • Shobhan Gaddameedhi
  • Hans P.A. Van DongenEmail author
Circadian Rhythm Disorders (F Turek, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Circadian Rhythm Disorders


Purpose of Review

Our 24/7 society is dependent on shift work, despite mounting evidence for negative health outcomes from sleep displacement due to shift work. This paper reviews short- and long-term health consequences of sleep displacement and circadian misalignment due to shift work.

Recent Findings

We focus on four broad health domains: metabolic health, risk of cancer, cardiovascular health, and mental health. Circadian misalignment affects these domains by inducing sleep deficiency, sympathovagal and hormonal imbalance, inflammation, impaired glucose metabolism, and dysregulated cell cycles. This leads to a range of medical conditions, including obesity, metabolic syndrome, type II diabetes, gastrointestinal dysfunction, compromised immune function, cardiovascular disease, excessive sleepiness, mood and social disorders, and increased cancer risk.


Interactions of biological disturbances with behavioral and societal factors shape the effects of shift work on health and well-being. Research is needed to better understand the underlying mechanisms and drive the development of countermeasures.


Circadian misalignment Sleep displacement Metabolic health Cancer risk Heart health Mental health 


Compliance with Ethical Standards

Conflict of Interest

Stephen James, Kimberly Honn, Shobhan Gaddameedhi, and Hans Van Dongen each declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Härmä M. Individual differences in tolerance to shiftwork: a review. Ergonomics. 1993;36(1–3):101–9. doi: 10.1080/00140139308967860.PubMedCrossRefGoogle Scholar
  2. 2.
    Saksvik IB, Bjorvatn B, Hetland H, Sandal GM, Pallesen S. Individual differences in tolerance to shift work—a systematic review. Sleep Med Rev. 2011;15:221–35. doi: 10.1016/j.smrv.2010.07.002.PubMedCrossRefGoogle Scholar
  3. 3.
    Kogi K. International research needs for improving sleep and health of workers. Ind Health. 2005;43:71–9. doi: 10.2486/indhealth.43.71.PubMedCrossRefGoogle Scholar
  4. 4.
    Edgar DM, Dement WC, Fuller CA. Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci. 1993;13(3):1065–79.PubMedGoogle Scholar
  5. 5.
    Dijk DJ, Czeisler CA. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett. 1994;166(1):63–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204.PubMedGoogle Scholar
  7. 7.
    Daan S, Beersma DGM, Borbély AA. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Phys. 1984;246:R161–78.Google Scholar
  8. 8.
    Åkerstedt T. Shift work and disturbed sleep/wakefulness. Occup Med. 2003;53:89–94. doi: 10.1093/occmedkqg046.CrossRefGoogle Scholar
  9. 9.
    Van Dongen HPA, Dinges DF. Sleep, circadian rhythms, and psychomotor vigilance. Clin Sports Med. 2005;24(2):237–49. doi: 10.1016/j.csm.2004.12.007.PubMedCrossRefGoogle Scholar
  10. 10.
    Folkard S, Lombardi DA, Tucker PT. Shiftwork: safety, sleepiness and sleep. Ind Health. 2005;43(1):20–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Van Dongen HPA, Balkin TJ, Hursh SR. Performance deficits during sleep loss and their operational consequences. In: Kryger M, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: Academic; 2016. p. 682–8.Google Scholar
  12. 12.
    United States Department of Labor: Bureau of Labor Statistics (2004). Workers on flexible and shift schedules in May 2004. Accessed 28 February 2017.
  13. 13.
    Nguyen J, Wright Jr KP. Influence of weeks of circadian misalignment on leptin levels. Nat Sci Sleep. 2009;2:9–18. doi: 10.2147/NSS.S7624.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Schoeller DA, Cella LK, Sinha MK, Caro JF. Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invest. 1997;100(7):1882–7. doi: 10.1172/JCI119717.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Abizaid A, Lui Z, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J of Clin Inves. 2006;116(12):3229–40. doi: 10.1172/JCI29867.CrossRefGoogle Scholar
  16. 16.
    Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obesity Rev. 2007;8(1):21–34. doi: 10.1111/j.1467-789X.2006.00270.x.CrossRefGoogle Scholar
  17. 17.
    Ferrini F, Salio C, Lossi L, Merighi A. Ghrelin in central neurons. Curr Neuropharmacol. 2009;7(1):37–49. doi: 10.2174/157015909787602779.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    •• McHill AW, Melanson EL, Higgins J, Connick E, Moehlman TM, Stothard ER, et al. Impact of circadian misalignment on energy metabolism during simulated nightshift work. PNAS. 2014;111(48):17302–7. doi: 10.1073/pnas.1412021111. Demonstration of the impact of circadian misalignment on energy metabolism.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schiavo-Cardozo D, Lima MMO, Pareja JC, Geloneze B. Appetite-regulating hormones from the upper gut: disrupted control of xenin and ghrelin in night workers. Clin Endocrinol. 2013;79(6):807–11. doi: 10.1111/cen.12114.CrossRefGoogle Scholar
  20. 20.
    Spiegel K, Tasali E, Penev P, Van Cauter E. Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141:846–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Spaeth AM, Dinges DF, Goel N. Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults. Sleep. 2013;36(7):981–90. doi: 10.5665/sleep.2792.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Morikawa Y, Nakagawa H, Miura K, Soyama Y, Ishizaki M, Kido T, et al. Effect of shift work on body mass index and metabolic parameters. Scand J Work Environ Health. 2007;33(1):45–50. doi: 10.5271/sjweh.1063.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao I, Bogossian F, Turner C. Does maintaining or changing shift types affect BMI? A longitudinal study. J Occup Environ Med. 2012;54(5):525–31. doi: 10.1097/JOM.0b013e31824e1073.PubMedCrossRefGoogle Scholar
  24. 24.
    Siqueria K, Griep R, Rotenberg L, Silva-Costa A, Fonseca M. Weight gain and body mass index following change from daytime to night shift—a panel study with nursing professionals. Chronobiol Int. 2016;33(6):776–9. doi: 10.3109/07420528.2016.1167719.PubMedCrossRefGoogle Scholar
  25. 25.
    Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9. doi: 10.1016/S0140-6736(99)01376-8.PubMedCrossRefGoogle Scholar
  26. 26.
    Yoon JA, Han DH, Noh JY, Kim MH, Son GH, Kim K, et al. Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice. PLoS One. 2012;7(8):e44053. doi: 10.1371/journal.pone.0044053.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 2011;3(12):e1001141. doi: 10.1371/journal.pmed.1001141.CrossRefGoogle Scholar
  28. 28.
    • Knutsson A, Kempe A. Shift work and diabetes—a systematic review. Chronobiol Int. 2014;31(10):1146–51. doi: 10.3109/07420528.2014.957308. Review of the evidence linking shift work with risk of diabetes.PubMedCrossRefGoogle Scholar
  29. 29.
    De Bacquer D, Van Risseghem M, Clays E, Kittel F, De Backer G, Braeckman L. Rotating shift work and the metabolic syndrome: a prospective study. Int J Epidemiol. 2009;38(3):848–54. doi: 10.1093/ije/dyn360.PubMedCrossRefGoogle Scholar
  30. 30.
    Li Y, Sato Y, Yamaguchi N. Shift work and the risk of metabolic syndrome: a nested case-control study. Int J Occup Environ Health. 2011;17(2):154–60. doi: 10.1179/107735211799030960.PubMedCrossRefGoogle Scholar
  31. 31.
    Oyama I, Kubo T, Fujino Y, Kadowaki K, Kunimoto M, Shirane K, et al. Retrospective cohort study of the risk of impaired glucose tolerance among shift workers. Scand J Work Environ Health. 2012;38(4):337–42. doi: 10.5271/sjweh.3297.PubMedCrossRefGoogle Scholar
  32. 32.
    Heath G, Roach GD, Dorrian J, Ferguson SA, Darwent D, Sargent C. The effect of sleep restriction on snacking behavior during a week of simulated shiftwork. Accid Anal Prev. 2012;45S:62–7. doi: 10.1016/j.aap.2011.09.028.CrossRefGoogle Scholar
  33. 33.
    Suwazono Y, Sakata K, Okubo Y, Harada H, Oishi M, Kobayasho E, et al. Long-tern longitudinal study on the relationship between alternating shift work and the onset of diabetes mellitus in male Japanese workers. J Occup Environ Med. 2006;48(5):455–62. doi: 10.1097/01.jom.0000214355.69182.fa.PubMedCrossRefGoogle Scholar
  34. 34.
    • Zwighaft Z, Reinke H, Asher G. The liver in the eyes of a chronobiologist. J Biol Rhythm. 2016;31(2):115–24. doi: 10.1177/0748730416633552. Overview of research on the liver as a model system for circadian rhythms in peripheral organs.CrossRefGoogle Scholar
  35. 35.
    Schieving LA. Biological clocks and the digestive system. Gastroenterology. 2000;119(2):536–49. doi: 10.1053/gast.2000.9305.CrossRefGoogle Scholar
  36. 36.
    Antunes LC, Levandovski R, Dantas G, Caumo W, Hidalgo MP. Obesity and shift work: chronobiological aspects. Nutr Res Rev. 2010;23:155–68. doi: 10.1017/S0954422410000016.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang F, Zhang L, Zhang Y, Zhang B, He Y, Xie S, et al. Meta-analysis on night shift work and risk of metabolic syndrome. Obes Rev. 2014;15:709–20. doi: 10.1111/obr.12194.PubMedCrossRefGoogle Scholar
  38. 38.
    • Proper KI, van de Langenberg D, Rodenberg W, Vermeulen RCH, van der Beek AJ, van Steeg H, et al. The relationship between shift work and metabolic risk factors. Am J Prev Med. 2016;50(5):el47–57. doi: 10.1016/j.amepre.2015.11.013. Review of the evidence of longitudinal studies linking shift work with metabolic risk factors.CrossRefGoogle Scholar
  39. 39.
    • Reynolds AC, Paterson JL, Ferguson SA, Stanley D, Wright Jr KP, Dawson D, et al. The shift work and health research agenda: considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep Med Rev. 2016; doi: 10.1016/j.smrv.2016.06.009. Discussion of the role of gut microbiota in circadian misalignment and metabolic disturbance.Google Scholar
  40. 40.
    • Broussard JL, Van Cauter E. Disturbances of sleep and circadian rhythms: novel risk factors for obesity. Curr Opin Endocrinol Diabetes Obes. 2016;23(5):353–9. doi: 10.1097/MED.0000000000000276. Review of evidence linking sleep deficiency and circadian misalignment with obesity.PubMedCrossRefGoogle Scholar
  41. 41.
    Ley RE. Obesity and the human microbiome. Curr Opinion Gastro. 2010;26(1):5–11. doi: 10.1097/MOG.0b013e328333d751.CrossRefGoogle Scholar
  42. 42.
    Knutsson A. Health disorders of shift workers. Occup Med. 2003;53:103–8. doi: 10.1093/occmed/kqg048.CrossRefGoogle Scholar
  43. 43.
    Nojkov B, Rubenstein JH, Chey WD, Hoogerwerf WA. The impact of rotating shift work on the prevalence of irritable bowel syndrome in nurses. Am J Gastroenterol. 2010;105:842–7. doi: 10.1038/ajg.2010.48.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Pietroiusti A, Forlini A, Magrini A, Galante A, Coppeta L, Gemma G, et al. Shift work increases the frequency of duodenal ulcer in H pylori infected workers. Occup Environ Med. 2006;63:773–5. doi: 10.1136/oem.2006.027367.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U, et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell. 2004;119:693–705. doi: 10.1016/j.cell.2004.11.015.PubMedCrossRefGoogle Scholar
  46. 46.
    •• Ackermann K, Plomp R, Lao O, Middleton B, Revell VL, Skene DJ, et al. Effect of sleep deprivation on rhythms of clock gene expression and melatonin in humans. Chronobiol Int. 2013;30(7):901–9. doi: 10.3109/07420528.2013.784773. Demonstration of interaction between sleep loss and circadian misalignment at the level of gene expression.PubMedCrossRefGoogle Scholar
  47. 47.
    Fu L, Kettner NM. The circadian clock in cancer development and therapy. Prog Mol Biol Transl Sci. 2013;119:221–82. doi: 10.1016/B978-0-12-396971-2.00009-9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    • Sancar A, Lindsey-Boltz LA, Gaddameedhi S, Selby CP, Ye R, Chiou YY, et al. Circadian clock, cancer, and chemotherapy. Biochemistry. 2015;54(2):110–23. doi: 10.1021/bi5007354. Discussion of the role of circadian rhythms in cancer and anti-cancer therapies.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee S, Donehower LA, Herron AJ, Moore DD, Fu L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One. 2010;5(6):e10995. doi: 10.1371/journal.pone.0010995.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    • Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A, Putluri N, et al. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell. 2016;30(6):909–24. doi: 10.1016/j.ccell.2016.10.007. Study in mice linking circadian misalignment with altered gene expression, liver dysfunction, and carcinogenesis.PubMedCrossRefGoogle Scholar
  51. 51.
    • Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutkar A, et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 2016;24(2):324–31. doi: 10.1016/j.cmet.2016.07.001. Study in mice showing the effects of circadian disruption on cancer progression in lung tissue.PubMedCrossRefGoogle Scholar
  52. 52.
    • Van Dycke KC, Rodenburg W, van Oostrom CT, van Kerkhof LW, Pennings JL, Roenneberg T, et al. Chronically alternating light cycles increase breast cancer risk in mice. Curr Biol. 2015;25(14):1932–7. doi: 10.1016/j.cub.2015.06.012. Study in mice linking altered light/dark cycles with breast cancer.PubMedCrossRefGoogle Scholar
  53. 53.
    Reiter RJ. The melatonin rhythm: both a clock and a calendar. Experientia. 1993;49(8):654–64. doi: 10.1007/BF01923947.PubMedCrossRefGoogle Scholar
  54. 54.
    Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science. 1980;2010(4475):1267–9.CrossRefGoogle Scholar
  55. 55.
    Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, et al. Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med. 1995;332(1):6–11. doi: 10.1056/NEJM199501053320102.PubMedCrossRefGoogle Scholar
  56. 56.
    Rodriguez C, Mayo JC, Sainz RM, Antolín I, Herrera F, Martín V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1–9.PubMedCrossRefGoogle Scholar
  57. 57.
    •• Bhatti P, Mirick DK, Randolph TW, Gong J, Buchanan DT, Zhang JJ, et al. Oxidative DNA damage during sleep periods among nightshift workers. Occup Environ Med. 2016;73(8):537–44. doi: 10.1136/oemed-2016-103629. Demonstration of the effect of displaced sleep on DNA damage and repair.PubMedCrossRefGoogle Scholar
  58. 58.
    Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007;8(12):1065–6.PubMedCrossRefGoogle Scholar
  59. 59.
    He C, Anand ST, Ebell MH, Vena JE, Robb SW. Circadian disrupting exposures and breast cancer risk: a meta-analysis. Int Arch Occup Environ Health. 2015;88(5):533–47. doi: 10.1007/s00420-014-0986-x.PubMedCrossRefGoogle Scholar
  60. 60.
    Lin X, Chen W, Wei F, Ying M, Wei W, Xie X. Night-shift work increases morbidity of breast cancer and all-cause mortality: a meta-analysis of 16 prospective cohort studies. Sleep Med. 2015;16(11):1381–7. doi: 10.1016/j.sleep.2015.02.543.PubMedCrossRefGoogle Scholar
  61. 61.
    Erren TC, Pape HG, Reiter RJ, Piekarski C. Chronodisruption and cancer. Naturwissenschaften. 2008;95:367–82. doi: 10.1007/s00114-007-0335-y.PubMedCrossRefGoogle Scholar
  62. 62.
    Parent M, El-Zein M, Rousseau M, Pintos J, Siemiatycki J. Night work and risk of cancer among men. Am J of Epidemiol. 2012;176(9):751–9. doi: 10.1093/aje/kws318.CrossRefGoogle Scholar
  63. 63.
    Rao D, Yu H, Bai Y, Zheng X, Xie L. Does night-shift work increase the risk of prostate cancer? A systematic review and meta-analysis. Onco Targets Ther. 2015;8:2817–26. doi: 10.2147/OTT.S89769.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Pesch B, Harth V, Rabstein S, Baisch C, Schiffermann M, Pallapies D, et al. Night work and breast cancer-results from the German GENICA study. Scand J Work Environ Health. 2010;36(2):134–41. doi: 10.5271/sjweh.2890.PubMedCrossRefGoogle Scholar
  65. 65.
    Kubo T, Oyama I, Nakamura T, Kunimoto M, Kadowaki K, Otomo H, et al. Industry-based retrospective cohort study of the risk of prostate cancer among rotating shift workers. Int J Urol. 2011;18:206–11. doi: 10.1111/j.1442-2042.2010.02714.x.PubMedCrossRefGoogle Scholar
  66. 66.
    Pronk A, Ji B, Shu X, Xue S, Yang G, Li H, et al. Night-shift work and breast cancer risk in a cohort of Chinese women. Am J Epidemiol. 2010;171(9):953–9. doi: 10.1093/aje/kwq029.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    • Travis RC, Balkwill A, Fensom GK, Appleby PN, Reeves GK, Wang SX, et al. Night shift work and breast cancer incidence: three prospective studies and a meta-analysis of published studies. J Natl Cancer Inst. 2016;108(12):djw169. doi: 10.1093/jnci/djw169. Review of reseearch on night shift work and breast cancer.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Fritschi L, Glass DC, Heyworth JS, Aronson K, Girschik J, Boyle T, et al. Hypothesis for mechanisms linking shiftwork and cancer. Med Hypothesis. 2011;77:430–6. doi: 10.1016/j.mehy.2011.06.002.CrossRefGoogle Scholar
  69. 69.
    Purdue MP, Hutchings SJ, Rushton L, Silverman DT. The proportion of cancer attributable to occupational exposures. Ann Epidemiol. 2015;25(3):188–92. doi: 10.1016/j.annepidem.2014.11.009.PubMedCrossRefGoogle Scholar
  70. 70.
    Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E. Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol. 2012;349(1):20–9. doi: 10.1016/j.mce.2011.06.042.PubMedCrossRefGoogle Scholar
  71. 71.
    Gonnissen HK, Hulshof T, Westerterp-Plantenga MS. Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obes Rev. 2013;14(5):405–16. doi: 10.1111/obr.12019.PubMedCrossRefGoogle Scholar
  72. 72.
    •• Grimaldi D, Carter JR, Van Cauter E, Leproult R. Adverse impact of sleep restriction and circadian misalignment on autonomic function in healthy young adults. Hypertension. 2016;68(1):243–50. doi: 10.1161/HYPERTENSIONAHA.115.06847. Demonstration of the effects of sleep restriction and circadian misalignment on the autonomic nervous system.PubMedCrossRefGoogle Scholar
  73. 73.
    Boudreau P, Dumont GA, Boivin DB. Circadian adaptation to night shift work influences sleep, performance, mood and the autonomic modulation of the heart. PLoS One. 2013;8(7):e70813. doi: 10.1371/journal.pone.0070813.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zimmerman FH. Cardiovascular disease and risk factors in law enforcement personnel: a comprehensive review. Cardio Rev. 2012;20:159–66. doi: 10.1097/CRD.0b013e318248d631.CrossRefGoogle Scholar
  75. 75.
    Varvarigou V, Farioli A, Korre M, Dahabreh IJ, Kales SN. Law enforcement duties and sudden cardiac death among police officers in the United States: case distribution study. BMJ. 2014;349:g6534. doi: 10.1136/bmj.g6534.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Pimenta AM, Kac G, De Souza RRC, Ferreira LMBA, Silqueira SMF. Night-shift work and cardiovascular risk among employees of a public university. Rev Assoc Med Bras. 2011;58(2):168–77. doi: 10.1016/S2255-4823(12)70177-7.CrossRefGoogle Scholar
  77. 77.
    Hermansson J, Gådin KG, Karlsson B, Lindahl B, Stegmayr B, Knutsson A. Ischemic stroke and shift work. Scand J Work Environ Health. 2007;33(6):435–9. doi: 10.5271/sjweh.1165.PubMedCrossRefGoogle Scholar
  78. 78.
    Brown DL, Feskanich D, Sanchez BN, Rexrode KM, Schernhammer ES, Lisabeth LD. Rotating night shift work and the risk of ischemic stroke. Am J Epidemiol. 2009;169(11):1370–7. doi: 10.1093/aje/kwp056.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ha M, Park J. Shiftwork and metabolic risk factors of cardiovascular disease. J Occup Health. 2005;47:89–95.PubMedCrossRefGoogle Scholar
  80. 80.
    Szosland D. Shift work and metabolic syndrome, diabetes mellitus and ischemic heart disease. Int J Occup Med Environ Health. 2010;23(3):287–91. doi: 10.2478/v10001-010-0032-5.PubMedCrossRefGoogle Scholar
  81. 81.
    Thomas C, Power C. Shift work and risk factors for cardiovascular disease: a study at age 45 years in the 1958 British birth cohort. Eur J Epidemiol. 2010;156(Pt 6):1661–72. doi: 10.1099/mic.0.037804-0.Google Scholar
  82. 82.
    Tenkanen L, Sjoblom KR, Kalimo R, Alikoski T, Härmä M. Shift work, occupation and coronary heart disease over 6 years of follow-up in the Helsinki Heart Study. Scand J Work Environ Health. 1997;23:257–65.PubMedCrossRefGoogle Scholar
  83. 83.
    van Amelsvoort LG, Schouten EG, Kok FJ. Impact of one year of shift work on cardiovascular disease risk factors. J Occup Environ Med. 2004;46(7):699–706.PubMedCrossRefGoogle Scholar
  84. 84.
    Smolensky MH, Hermida RC, Portaluppi F. Circadian mechanisms of 24-hour blood pressure regulation and patterning. Sleep Med Rev. 2016; doi: 10.1016/j.smrv.2016.02.003.Google Scholar
  85. 85.
    • Rodrigo GC, Denniff M. Time-of-day variation in vascular function. Exp Physiol. 2016;101(8):1030–4. doi: 10.1113/EP085780. Review of the role of circadian rhythmicity in vascular function.PubMedCrossRefGoogle Scholar
  86. 86.
    Haupt CM, Alte D, Dorr M, Robinson DM, Felix SB, John U, et al. The relation of exposure to shift work with atherosclerosis and myocardial infarction in a general population. Atherosclerosis. 2008;201(1):205–11. doi: 10.1016/j.atherosclerosis.2007.12.059.PubMedCrossRefGoogle Scholar
  87. 87.
    • Machado RM, Koike MK. Circadian rhythm, sleep pattern, and metabolic consequences: an overview on cardiovascular risk factors. Horm Mol Biol Clin Investig. 2014;18(1):47–52. doi: 10.1515/hmbci-2013-0057. Overview of the role of circadian rhythms and sleep on risk of cardiovascular disease.PubMedGoogle Scholar
  88. 88.
    Puttonen S, Härmä M, Hublin C. Shift work and cardiovascular disease-pathways from circadian stress to morbidity. Scand J Work Environ Health. 2010;36(2):96–108. doi: 10.5271/sjweh.2894.PubMedCrossRefGoogle Scholar
  89. 89.
    Burgueno A, Genna C, Gianotti TF, Sookoian S, Pirola CJ. Increased levels of resistin in rotating shift workers: a potential mediator of cardiovascular risk associated with circadian misalignment. Atherosclerosis. 2010;210:625–9. doi: 10.1016/j.atherosclerosis.2009.12.032.PubMedCrossRefGoogle Scholar
  90. 90.
    • Honn KA, Garde AH, Fischer FM, Van Dongen HPA. 22nd International Symposium on Shiftwork and Working Time: challenges and solutions for healthy work hours. Chronobiol Int. 2016;33(6):581–8. doi: 10.1080/07420528.2016.1195632. Summary of adverse health consequences of night and shift work.PubMedCrossRefGoogle Scholar
  91. 91.
    Manrique-Garcia E, Sidorchuk A, Hallqvist J, Moradi T. Socioeconomic position and incidence of acute myocardial infarction: a meta-analysis. BMJ. 2017;65(4):301–9. doi: 10.1136/jech.2009.104075.Google Scholar
  92. 92.
    Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997;20(2):78–84. doi: 10.1016/S0166-2236(96)10069-2.PubMedCrossRefGoogle Scholar
  93. 93.
    Spencer RL, Deak T. A users guide to HPA axis research. Physiol Behav. 2016; doi: 10.1016/j.physbeh.2016.11.014.PubMedGoogle Scholar
  94. 94.
    Harris A, Waage S, Ursin H, Hansen HM, Bjorvatn B, Eriksen HR. Cortisol, reaction time test and health among offshore shift workers. Psychoneuroendocrinology. 2010;35:1339–47. doi: 10.1016/j.psyneuen.2010.03.006.PubMedCrossRefGoogle Scholar
  95. 95.
    Touitou Y, Motohashi Y, Reinberg A, Touitou C, Bourdeleau P, Bogdan A, et al. Effect of shift work on the night-time secretory patterns of melatonin, prolactin, cortisol and testosterone. Eur J Appl Physiol. 1990;60:288–92. doi: 10.1007/BF00379398.CrossRefGoogle Scholar
  96. 96.
    • Kalmbach DA, Pillai V, Cheng P, Arnedt JT, Drake CL. Shift work disorder, depression, and anxiety in the transition to rotating shifts: the role of sleep reactivity. Sleep Med. 2015;16(12):1532–8. doi: 10.1016/j.sleep.2015.09.007. Discussion of the effect of sleep disruption from shift work on mental health.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    • Van Someren EJ, Cirelli C, Dijk DJ, Van Cauter E, Schwartz S, Chee MWL. Disrupted sleep: from molecules to cognition. J Neurosci. 2015;35(41):13889–95. doi: 10.1523/JNEUROSCI.2592-15.2015. Discussion of the impact of sleep disturbance on cognitive functioning.
  98. 98.
    •• Floam S, Simpson N, Nemeth E, Scott-Sutherland J, Gautam S, Haack M. Sleep characteristics as predictor variables of stress systems markers in insomnia disorder. J Sleep Res. 2015;24(3):296–304. doi: 10.1111/jsr.12259. Study of the relationship between sleep and inflammatory and stress markers.PubMedCrossRefGoogle Scholar
  99. 99.
    Violanti KM, Aron F. Police stressors: variations in perception among police personnel. J Crim Justice. 1995;23(3):287–94. doi: 10.1016/0047-2352(95)00012-F.CrossRefGoogle Scholar
  100. 100.
    Bakker AB, Heuven E. Emotional dissonance, burnout, and in-role performance among nurses and police officers. Int J Stress Manage. 2006;13(4):423–40. doi: 10.1037/1072-5245.13.4.423.CrossRefGoogle Scholar
  101. 101.
    Monk TH. What can the chronobiologist do to help the shift worker? J Biol Rhythm. 2000;15(2):86–94.CrossRefGoogle Scholar
  102. 102.
    Poole CJM, Evans GR, Spurgeon A, Bridges KW. Effects of a change in shift work on health. Occup Med. 1992:42193–9. doi: 10.1093/occmed/42.4.193.
  103. 103.
    • Muurlink O, Peetz D, Murray G. Work-related influences on marital satisfaction amongst shiftworkers and their partners: a large, matched-pairs study. Community Work Fam. 2014;17(3):288–307. doi: 10.1080/13668803.2014.933775. Study of the relationship between shift work and social well-being.CrossRefGoogle Scholar
  104. 104.
    Violanti JM, Charles LE, Hartley TA, Mnatsakanova A, Andrew ME, Fekedulegn D, et al. Shift-work and suicide ideation among police officers. Am J of Industrial Med. 2008;51:758–68. doi: 10.1002/ajim.20629.CrossRefGoogle Scholar
  105. 105.
    Knutsson A, Åkerstedt T. The healthy-worker effect: self-selection among Swedish shift workers. Work Stress. 1992;6:163–7.CrossRefGoogle Scholar
  106. 106.
    Puttonen S, Viitasalo K, Härmä M. The relationship between current and former shift work and the metabolic syndrome. Scand J Work Environ Health. 2012;38(4):343–8. doi: 10.5271/sjweh.3267.PubMedCrossRefGoogle Scholar
  107. 107.
    • Phiri LP, Draper CE, Lambert EV, Kolbe-Alexander TL. Nurses’ lifestyle behaviours, health priorities and barriers to living a healthy lifestyle: a qualitative descriptive study. BMC Nurs. 2014;13(38):1–11. doi: 10.1186/s12912-014-0038-6. Study of shift work and other obstacles to a healthy lifestyle in nurses.Google Scholar
  108. 108.
    Kolasa KM, Firnhaber GC. 13 tips for surviving the 12-hour shift. Nursing. 2011;41(12):55–60. doi: 10.1097/01.NURSE.0000407679.19754.52.PubMedCrossRefGoogle Scholar
  109. 109.
    Kuehl KS, Elliot DL, Goldberg L, MacKinnon DP, Vila BJ, Smith J, et al. The safety and health improvement: enhancing law enforcement departments study: feasibility and findings. Frontiers Pub Health. 2014;2(36):1–7. doi: 10.3389/fpubh.2014.00038.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stephen M. James
    • 1
    • 2
  • Kimberly A. Honn
    • 1
    • 2
  • Shobhan Gaddameedhi
    • 1
    • 3
  • Hans P.A. Van Dongen
    • 1
    • 2
    Email author
  1. 1.Sleep and Performance Research CenterWashington State UniversitySpokaneUSA
  2. 2.Elson S. Floyd College of MedicineWashington State UniversitySpokaneUSA
  3. 3.College of PharmacyWashington State UniversitySpokaneUSA

Personalised recommendations