Advertisement

Gut Disease in Systemic Sclerosis—New Approaches to Common Problems

  • Jessica Zhu
  • Tracy FrechEmail author
Scleroderma (C Denton, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Scleroderma

Abstract

Purpose of review

The goal of this manuscript is to discuss the new diagnostic and potential treatment options for gut disease in systemic sclerosis (SSc). The concepts of quantification of gut perfusion and motility are reviewed. The risks of empiric therapeutics and challenges of studying the microbiome in SSc are discussed.

Recent findings

There are diagnostics that can provide information on gut perfusion and function that are of value in SSc. Easily implemented diagnostic tests are critical to avoid complications of empiric therapy. The role of the microbiome and drugs that target dysmotility are areas of active research.

Summary

SSc-related gastrointestinal tract involvement can be heterogeneous in clinical presentation and disease course. Noninvasive gastrointestinal measurement techniques that quantify neural communications with microvasculature in SSc can potentially guide the proper addition and discontinuation of therapeutics. The role of the microbiome and the role of nitric oxide on gut function are important areas of research for understanding gut dysfunction in SSc.

Keywords

Systemic sclerosis Scleroderma Gastrointestinal tract dysmotility Microbiome Ischemia-reperfusion 

Notes

Acknowledgment

The authors would like to recognize the University of Utah CCTS/PPH Translational Science Grant, which funded Dr. Bryan Jones and Dr. Erinn Downs-Kelly who performed the CMP analyses described in this article.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Gyger G, Baron M. Gastrointestinal manifestations of scleroderma: recent progress in evaluation, pathogenesis, and management. Curr Rheumatol Rep. 2012;14(1):22–9.CrossRefGoogle Scholar
  2. 2.
    • Poudel DR, Jayakumar D, Danve A, Sehra ST, Derk CT. Determinants of mortality in systemic sclerosis: a focused review. Rheumatol Int. 2018;38(10):1847–58. The review discusses the newer focus of gastrointestinal tract disease on mortality in the international systemic sclerosis research community.CrossRefGoogle Scholar
  3. 3.
    Poudel DR, Derk CT. Mortality and survival in systemic sclerosis: a review of recent literature. Curr Opin Rheumatol. 2018;30(6):588–93.Google Scholar
  4. 4.
    • Eldoma M, Pope J. The contemporary management of systemic sclerosis. Expert Rev Clin Immunol. 2018;14(7):573–82. This contemporary management article highlights the importance of the individual patient phenotype.CrossRefGoogle Scholar
  5. 5.
    Bae S, Allanore Y, Furst DE, Bodukam V, Coustet B, Morgaceva O, et al. Associations between a scleroderma-specific gastrointestinal instrument and objective tests of upper gastrointestinal involvements in systemic sclerosis. Clin Exp Rheumatol. 2013;31(2 Suppl 76):57–63.Google Scholar
  6. 6.
    Lepri G, Guiducci S, Bellando-Randone S, Giani I, Bruni C, Blagojevic J, et al. Evidence for oesophageal and anorectal involvement in very early systemic sclerosis (VEDOSS): report from a single VEDOSS/EUSTAR centre. Ann Rheum Dis. 2015;74(1):124–8.CrossRefGoogle Scholar
  7. 7.
    Fonseca C, Abraham D, Ponticos M. Neuronal regulators and vascular dysfunction in Raynaud’s phenomenon and systemic sclerosis. Curr Vasc Pharmacol. 2009;7(1):34–9.CrossRefGoogle Scholar
  8. 8.
    Rodnan GP, Myerowitz RL, Justh GO. Morphologic changes in the digital arteries of patients with progressive systemic sclerosis (scleroderma) and Raynaud phenomenon. Medicine (Baltimore). 1980;59(6):393–408.CrossRefGoogle Scholar
  9. 9.
    Galluccio F, Allanore Y, Czirjak L, Furst DE, Khanna D, Matucci-Cerinic M. Points to consider for skin ulcers in systemic sclerosis. Rheumatology (Oxford). 2017;56(suppl_5):v67–71.CrossRefGoogle Scholar
  10. 10.
    Quaegebeur A, Lange C, Carmeliet P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron. 2011;71(3):406–24.CrossRefGoogle Scholar
  11. 11.
    Rossi D, Russo A, Manna E, Binello G, Baldovino S, Sciascia S, et al. The role of nail-videocapillaroscopy in early diagnosis of scleroderma. Autoimmun Rev. 2013;12(8):821–5.CrossRefGoogle Scholar
  12. 12.
    • Machin DR, Gates PE, Vink H, Frech TM, Donato AJ. Automated measurement of microvascular function reveals dysfunction in systemic sclerosis: a cross-sectional study. J Rheumatol. 2017;44(11):1603–1611. This study introduces the use of sublingual vascular measurement and glycocalyx in systemic sclerosis. J Rheumatol.Google Scholar
  13. 13.
    Nussbaum C. Cavalcanti Fernandes Heringa A, Mormanova Z, Puchwein-Schwepcke AF, Bechtold-Dalla Pozza S, Genzel-Boroviczeny O. Early microvascular changes with loss of the glycocalyx in children with type 1 diabetes. J Pediatr. 2014;164(3):584–9 e1.Google Scholar
  14. 14.
    Tachon G, Harrois A, Tanaka S, Kato H, Huet O, Pottecher J, et al. Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med. 2014;42(6):1433–41.CrossRefGoogle Scholar
  15. 15.
    Cabrales P, Vazquez BY, Tsai AG, Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol. 2007;102(6):2251–9.CrossRefGoogle Scholar
  16. 16.
    Eskens BJ, Mooij HL, Cleutjens JP, Roos JM, Cobelens JE, Vink H, et al. Rapid insulin-mediated increase in microvascular glycocalyx accessibility in skeletal muscle may contribute to insulin-mediated glucose disposal in rats. PLoS One. 2013;8(1):e55399.CrossRefGoogle Scholar
  17. 17.
    Broekhuizen L, Lemkes B, Mooij HL, Meuwese MC, Verberne H, Holleman F, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010;53(12):2646–55.CrossRefGoogle Scholar
  18. 18.
    • Schmidt A, Meier B, Caca K. Endoscopic full-thickness resection: current status. World J Gastroenterol. 2015;21(31):9273–85. The study highlihts the value of endoscopic full-thickness biopsy interpretation.CrossRefGoogle Scholar
  19. 19.
    Jones BW, Pfeiffer RL, Ferrell WD, Watt CB, Tucker J, Marc RE. Retinal remodeling and metabolic alterations in human AMD. Front Cell Neurosci. 2016;10:103.Google Scholar
  20. 20.
    Marc RE, Jones BW. Molecular phenotyping of retinal ganglion cells. J Neurosci. 2002;22(2):413–27.CrossRefGoogle Scholar
  21. 21.
    Filpa V, Moro E, Protasoni M, Crema F, Frigo G, Giaroni C. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology. 2016;111:14–33.CrossRefGoogle Scholar
  22. 22.
    •• Mittal R, Coopersmith CM. Redefining the gut as the motor of critical illness. Trends Mol Med. 2014;20(4):214–23. This report introduces the concept of changes to the gut with ischemia-reperfusion injury.CrossRefGoogle Scholar
  23. 23.
    Sarosiek I, Selover KH, Katz LA, Semler JR, Wilding GE, Lackner JM, et al. The assessment of regional gut transit times in healthy controls and patients with gastroparesis using wireless motility technology. Aliment Pharmacol Ther. 2010;31(2):313–22.Google Scholar
  24. 24.
    •• Malagelada C, Karunaratne TB, Accarino A, Cogliandro RF, Landolfi S, Gori A, et al. Comparison between small bowel manometric patterns and full-thickness biopsy histopathology in severe intestinal dysmotility. Neurogastroenterol Motil. 2018;30(3).  https://doi.org/10.1111/nmo.13219. This article highlights the value of combining study techniques to understand pathophysiology of dysmotility.
  25. 25.
    Camilleri M, Bharucha AE, di Lorenzo C, Hasler WL, Prather CM, Rao SS, et al. American Neurogastroenterology and Motility Society consensus statement on intraluminal measurement of gastrointestinal and colonic motility in clinical practice. Neurogastroenterol Motil. 2008;20(12):1269–82.CrossRefGoogle Scholar
  26. 26.
    Mayer EA, Hsiao EY. The gut and its microbiome as related to central nervous system functioning and psychological well-being: introduction to the special issue of psychosomatic medicine. Psychosom Med. 2017;79(8):844–6.CrossRefGoogle Scholar
  27. 27.
    Volkmann ER. Intestinal microbiome in scleroderma: recent progress. Curr Opin Rheumatol. 2017;29(6):553–60.Google Scholar
  28. 28.
    •• Bellocchi C, Volkmann ER. Update on the gastrointestinal microbiome in systemic sclerosis. Curr Rheumatol Rep. 2018;20(8):49. This article discusses the microbiome in SSc and highlights challenges and opportunities for future studies.CrossRefGoogle Scholar
  29. 29.
    •• Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radic Biol Med. 2017;105:48–67. This article discusses the interaction between the microbiome and vascular health with a focus on the role of nitric oxide.CrossRefGoogle Scholar
  30. 30.
    Tian XP, Zhang X. Gastrointestinal complications of systemic sclerosis. World J Gastroenterol. 2013;19(41):7062–8.CrossRefGoogle Scholar
  31. 31.
    Frech TM, Revelo MP, Drakos SG, Murtaugh MA, Markewitz BA, Sawitzke AD, et al. Vascular leak is a central feature in the pathogenesis of systemic sclerosis. J Rheumatol. 2012;39(7):1385–91.CrossRefGoogle Scholar
  32. 32.
    Clifton HL, Machin DR, Groot HJ, Frech TM, Donato AJ, Richardson RS, et al. Attenuated nitric oxide bioavailability in systemic sclerosis: Evidence from the novel assessment of passive leg movement. Exp Physiol. 2018;103(10):1412–1424.Google Scholar
  33. 33.
    Tiev KP, Cabane J. Digestive tract involvement in systemic sclerosis. Autoimmun Rev. 2011;11(1):68–73.CrossRefGoogle Scholar
  34. 34.
    Carbone F, Tack J. The effect of sildenafil on gastric motility and satiation in healthy controls. United European Gastroenterol J. 2018;6(6):846–54.CrossRefGoogle Scholar
  35. 35.
    Nakaji G, Fujihara M, Fukata M, Yasuda S, Odashiro K, Maruyama T, et al. Influence of common cardiac drugs on gastroesophageal reflux disease: multicenter questionnaire survey. Int J Clin Pharmacol Ther. 2011;49(9):555–62.Google Scholar
  36. 36.
    Bortolotti M, Mari C, Lopilato C, La Rovere L, Miglioli M. Sildenafil inhibits gastroduodenal motility. Aliment Pharmacol Ther. 2001;15(2):157–61.CrossRefGoogle Scholar
  37. 37.
    Bortolotti M, Mari C, Giovannini M, Pinna S, Miglioli M, Pandolfo N. Effects of sildenafil on esophageal motility of normal subjects. Dig Dis Sci. 2001;46(11):2301–6.CrossRefGoogle Scholar
  38. 38.
    Thielemans L, Depoortere I, Perret J, Robberecht P, Liu Y, Thijs T, et al. Desensitization of the human motilin receptor by motilides. J Pharmacol Exp Ther. 2005;313(3):1397–405.CrossRefGoogle Scholar
  39. 39.
    •• Valentin N, Acosta A, Camilleri M. Early investigational therapeutics for gastrointestinal motility disorders: from animal studies to phase II trials. Expert Opin Investig Drugs. 2015;24(6):769–79. This is a comprehensive review of gastrointestinal tract dysmotlity therapeutics and the rationale for their use.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MedicineUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Internal Medicine, Division of RheumatologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations