Series of forms, visual techniques, and quantitative devices: ordering the world between the end of the nineteenth and early twentieth centuries

  • Marco TamboriniEmail author
Part of the following topical collections:
  1. History and Philosophy of Taxonomy as an Information Science


In this paper, I investigate the variety and richness of the taxonomical practices between the end of the nineteenth and the early twentieth centuries. During these decades, zoologists and paleontologists came up with different quantitative practices in order to classify their data in line with the new biological principles introduced by Charles Darwin. Specifically, I will investigate Florentino Ameghino’s mathematization of mammalian dentition and the quantitative practices and visualizations of several German-speaking paleontologists at the beginning of the twentieth century. In so doing, this paper will call attention to the visual and quantitative language of early twentieth-century systematics. My analysis will therefore contribute to a prehistory of the statistical frame of mind in biology, a study which has yet to be written in full. Second, my work highlights the productive intertwinement between biological practices and philosophical frameworks at the turn of the nineteenth century. Deeply rooted in Kantian bio-philosophy, several biologists sought to find rules in order to apply ordering principles to chaotic taxonomic information. This implies the necessity to investigate the neglected role of Kantian and Romantic bio-philosophy in the unfolding of twentieth-century biology.


Quantitative practices Mathematical zoology Statistical frame of mind Statistics Kantian and Romantic bio-philosophy 



I would like to thank David Sepkoski, Maurizio Esposito, Michele Cardani, and the two anonymous referees for their helpful suggestions on earlier versions of this paper. Furthermore, I thank Joeri Witteveen and Catherine Kendig for inviting me to this special issue and for their great and inspiring feedback.


  1. Allen, G. E. (1975). Life science in the twentieth century. New York: Wiley.Google Scholar
  2. Ameghino, F. (1884). Filogenia: Principios de clasificación transformista, basados sobre leyes naturales y proporciones matemáticas. Buenos Aires: Editorial Acme.Google Scholar
  3. Ameghino, F. (1889). Visión y Realidad (Alegoría científica a propósito de “Filogenia”). Boletín del Instituto Geográfico Argentino, 10, 340–350.Google Scholar
  4. Anonymous. (1882). Congrès Géologique International: Compte Rendu 2me Session, Bologne, 1881. Bologne: Fava et Garagnani.Google Scholar
  5. Archibald, J. D. (2014). Aristotle’s ladder, Darwin’s tree: The evolution of visual metaphors for biolgoical order. New York: Columbia University Press.CrossRefGoogle Scholar
  6. Bowler, P. J. (1996). Life’s splendid drama: Evolutionary biology and the reconstruction of life’s ancestry, 1860–1940. Chicago: The University of Chicago Press.Google Scholar
  7. Cain, J. (1989). Moving beyond consistency: The historical significance of Simpson’s Tempo and mode in evolution, Unpublished MA thesis. University of Maryland College Park.Google Scholar
  8. Cain, J. (1993). Common problems and cooperative solutions: Organizational activity in evolutionary studies, 1936–1947. Isis, 84, 1–25.Google Scholar
  9. Caponi, G. (2017). El darwinismo de Ameghino: una lectura de Filogenia. Florianópolis: NEL/UFSC.Google Scholar
  10. Caponi, G. (2018). Las flechas de la evolución: Florentino Ameghino y las leyes de la filogenia. Scientiae Studia, 15, 365–386.CrossRefGoogle Scholar
  11. Cassirer, E. (1969). The problem of knowledge: Philosophy, science, and history since Hegel. New Heven: Yale University.Google Scholar
  12. Coen, D. R. (2007). Vienna in the age of uncertainty. Science, liberalism, and private life. Chicago: Chicago University Press.CrossRefGoogle Scholar
  13. Cuvier, G. (1813). Essay on the theory of the earth. Edinburgh: William Blackwood.Google Scholar
  14. Daston, L., & Galison, P. (2007). Objectivity. New York: Zone Books.Google Scholar
  15. Davenport, C. B. (1904). Statistical methods with special reference to biological variation. New York: Wiley.Google Scholar
  16. Dawson, G. (2016). Show me the bone: Reconstructing prehistoric monsters in nineteenth-century britain and America. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  17. Desrosières, A. (1998). The politics of large numbers. A history of statistical reasoning. Cambridge: Harvard University Press.Google Scholar
  18. Ebach, M. C. (2015). Origins of biogeography. The role of biological classification in early plant and animal geography. Dordrecht: Springer.Google Scholar
  19. Esposito, M. (2016). Romantic biology, 1890–1945. London: Routledge.Google Scholar
  20. Farber, P. L. (2000). Finding order in nature: The naturalist tradition from Linnaeus To E. O. Wilson. Baltimore: Johns Hopkins University Press.Google Scholar
  21. Goldschmidt, R. B. (1911). Einführung in die Vererbungswissenschaft. Leipzig: Engelmann.Google Scholar
  22. Hacking, I. (1990). The taming of chance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Hagen, J. (2003). The statistical frame of mind in systematic biology from Quantitative Zoology to Biometry. Journal of the History of Biology, 36, 353–384.CrossRefGoogle Scholar
  24. Harrington, A. (1999). Reenchanted science: Holism in German culture from Wilhelm II to Hitler. Princeton: Princeton University Press.Google Scholar
  25. Hineline, M. L. (1993). The visual culture of the earth sciences, 1863–1970. San Diego: University of California.Google Scholar
  26. Huneman, P. (2006). Naturalising purpose: From comparative anatomy to the ‘adventure of reason’. Studies in History and Philosophy of Biological and Biomedical Sciences, 37, 649–674.CrossRefGoogle Scholar
  27. Johannensen, W. (1909). Elemente der exakten Erblichkeitslehre. Jena: Fisher.Google Scholar
  28. Kant, I. (2000 (1790)). Critique of the power of judgment. Cambridge: Cambridge University Press.Google Scholar
  29. Kant, I. (2004 (1786)). Metaphysical foundations of natural science. Cambridge: Cambridge University Press.Google Scholar
  30. Kendig, C. (2016). Homologizing as kinding. In C. Kendig (Ed.), Natural kinds and classification in scientific practice (pp. 106–125). Abingdon: Routledge.Google Scholar
  31. Klähn, H. (1920). Der Wert der Variationsstatistik für die Paläontologie. Berichte d. Nat. Gesellsch. z. Freiburg, 22, 1–218.Google Scholar
  32. Laporte, L. F. (1987). Simple curiosity; Letters from George Gaylord Simpson to his family, 1921–1970. Berkeley: University of California Press.Google Scholar
  33. Laporte, L. F. (2000). George Gaylord Simpson: Paleontologist and evolutionist. New York: Columbia University Press.CrossRefGoogle Scholar
  34. Larson, J. (1994). Interpreting nature: The science of living form from Linnaeus to Kant. Baltimore: Johns Hopkins University Press.Google Scholar
  35. Leitch, D. (1951). Biometrics and systematics in relation to palaeontology. Proceedings of the Linnean Society of London, 162, 159–170.CrossRefGoogle Scholar
  36. Levine, A., & Novoa, A. (2012). ¡Darwinistas! The construction of evolutionary thought in nineteenth century Argentina. Leiden: Brill.CrossRefGoogle Scholar
  37. Lopes, M. M., & Podgorny, I. (2000). The shaping of Latin American museums of natural history, 1850–1990. Osiris, 15, 108–118.CrossRefGoogle Scholar
  38. Lull, R. S. (1917). Organic evolution. New York: The Macmillan Company.CrossRefGoogle Scholar
  39. McOuat, G. (2001). From cutting nature at its joints to measuring it: New kinds and new kinds of people in biology. Studies in History and Philosophy of Science Part A, 32, 613–645.CrossRefGoogle Scholar
  40. Müller, G. B. (2017). Vivarium. Experimental, quantitative, and theoretical biology at Vienna’s Biologische Versuchsanstalt. Cambridge: MIT Press.CrossRefGoogle Scholar
  41. Müller-Wille, S. (2017). Names and numbers: ‘Data’ in classical natural history. Osiris, 32, 109–128.CrossRefGoogle Scholar
  42. Neumayr, M. (1874). Die Fauna der Schichten mit Aspidoceras acanthicum. Abhandlungen der Geologischen Bundesanstalt in Wien, 5, 141–257.Google Scholar
  43. Nickelsen, K. (2006). Botanists, draughtsmen and nature: The construction of eighteenth-century botanical illustrations. Berlin: Springer.Google Scholar
  44. Novoa, A., & Levine, A. (2010). From man to ape: Darwinism in Argentina, 1870–1920. Chicago: Chicago University Press.CrossRefGoogle Scholar
  45. Nyhart, L. K. (1987). The disciplinary breakdown of German morphology, 1870–1900. Isis, 78, 365–389.CrossRefGoogle Scholar
  46. Nyhart, L. K. (1995). Biology takes form. Animal morphology and the German Universities 1800–1900. Chicago: The University of Chicago Press.Google Scholar
  47. Owen, R. (1845). Odontography; or, A treatise on the comparative anatomy of teeth: Their physiological relations, mode of development, and microscopic structure in the vertebrate animals (Vol. 2). Paris: Hippolyte Bailliere.Google Scholar
  48. Podgorny, I. (2005). Bones and devices in the constitution of paleontology in Argentina at the end of the nineteenth century. Science in Context, 18, 249–283.CrossRefGoogle Scholar
  49. Podgorny, I. (2015). Human origins in the New World? Florentino Ameghino and the emergence of prehistoric archaeology in the Americas (1875–1912). PaleoAmerica, 1, 68–80.CrossRefGoogle Scholar
  50. Podgorny, I. (2017). Manifest ambiguity: Intermediate forms, variation, and mammal paleontology in Argentina, 1830–1880. Studies in History and Philosophy of Biological and Biomedical Sciences, 66, 27–36.CrossRefGoogle Scholar
  51. Podgorny, I. (2018). Florentino Ameghino y Hnos. Empresa Argentina de Paleontología Ilimitada. Buenos Aires: Edhasa.Google Scholar
  52. Porter, T. M. (1986). The rise of statistical thinking 1820–1900. Princeton, NJ: Princeton University Press.Google Scholar
  53. Porter, T. M. (1995). Trust in numbers: The pursuit of objectivity in science and public life. Princeton, NJ: Princeton University Press.Google Scholar
  54. Rehbock, P. F. (1990). Transcendental anatomy. In A. Cunningham & N. Jardine (Eds.), Romanticism and the sciences. Cambridge: Cambridge University Press.Google Scholar
  55. Richards, R. J. (2002). The romantic conception of life: Science and philosophy in the age of Goethe. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  56. Richards, R. J. (2008). The tragic sense of life. Ernst Haeckel and the Struggle over evolutionary thought. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  57. Richards, R. J. (Ed). (2016). Objectivity and the theory of the archetype. In What reason promises. Essays on reason, nature and history. Berlin: De Gruyter.Google Scholar
  58. Rieppel, L. (2012). Bringing dinosaurs back to life: Exhibiting prehistory at the American Museum of Natural History. Isis, 102, 460–490.CrossRefGoogle Scholar
  59. Rieppel, O. (2012). Adolf Naef (1883–1949), systematic morphology and phylogenetics. Journal of Zoological Systematics and Evolutionary Research, 50, 2–13.CrossRefGoogle Scholar
  60. Rieppel, O. (2016). Phylogenetic systematics: Haeckel to Hennig. London: CRC Press.CrossRefGoogle Scholar
  61. Roe, A. (1985). 1984 Leona Tyler award address: Career and life. The Counseling Psychologist, 13, 311–326.CrossRefGoogle Scholar
  62. Rudwick, M. J. S. (1967). The emergence of a visual language for geological science, 1760–1840. History of Science, 14, 149–195.CrossRefGoogle Scholar
  63. Rudwick, M. J. S. (1997). Georges Cuvier, fossil bones, and geological catastrophes. Chicago: Chicago University Press.CrossRefGoogle Scholar
  64. Schäffner, W. (1999). Verwaltung der Kultur. Alexander von Humboldts Medien (1799–1834). In S. Rieger, S. Schahadata, & M. Weinberg (Eds.), Interkultularität zwischen Inszenierung und Archiv. Tübingen: Narr.Google Scholar
  65. Sepkoski, D. (2012). Rereading the fossil record: the growth of paleobiology as an evolutionary discipline. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  66. Sepkoski, D., & Tamborini, M. (2018). “An image of science”: Cameralism, statistics, and the visual language of natural history in the nineteenth century. Historical Studies in the Natural Sciences, 48, 56–109.CrossRefGoogle Scholar
  67. Sereno, P. C. (1982). An early Eocene sirenian from Patagonia (Mammalia, Sirenia). American Museum novitates; no. 2729. American Museum Novitates, 2729, 1–10.Google Scholar
  68. Simpson, G. G. (1937a). The Fort Union of the Crazy Mountain Field, Montana, and its mammalian faunas. Bulletin of United States National Museum, 169, 1–287.CrossRefGoogle Scholar
  69. Simpson, G. G. (1937b). Patterns of phyletic evolution. Bulletin of the Geological Society of America, 48, 303–313.CrossRefGoogle Scholar
  70. Simpson, G. G. (1980). Why and how: Some problems and methods in historical biology. Oxford: Pergamon Press.Google Scholar
  71. Simpson, G. G. (1984). Discoverers of the lost world. New Haven: Yale University Press.Google Scholar
  72. Simpson, G. G., & Roe, A. (1939). Quantitative zoology. New York: Mc-Graw-Hill.Google Scholar
  73. Simpson, G. G., & Roe, A. (1942). A standard frequency distribution method. American Museum Novitates, 1190, 1–19.Google Scholar
  74. Sokal, R. R. R., & James, F. (1969). Biometry. The principles and practice of statistics in biology. San Francisco: W.H. Freeman.Google Scholar
  75. Tamborini, M. (2015a). Die Wurzeln der ideographischen Paläontologie: Karl Alfred von Zittels Praxis und sein Begriff des Fossils. NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, 23, 117–142.CrossRefGoogle Scholar
  76. Tamborini, M. (2015b). Paleontology and Darwin’s theory of evolution: The subversive role of statistics at the end of the 19th century. Journal of the History of Biology, 48, 575–612.CrossRefGoogle Scholar
  77. Tamborini, M. (2016). “If the Americans can do it, so can we”: How dinosaur bones shaped german paleontology. History of Science, 54, 225–256.CrossRefGoogle Scholar
  78. Tamborini, M. (2017). The reception of Darwin in late nineteenth-century German paleontology as a case of pyrrhic victory. Studies in History and Philosophy of Biological and Biomedical Sciences, 66, 37–45.CrossRefGoogle Scholar
  79. Tamborini, M., & Vennen, M. (2017). Disruptions and changing habits: The case of the Tendaguru expedition. Museum History Journal, 10, 183–199.CrossRefGoogle Scholar
  80. Vai, G. B. (2004). The second international geological Congress, Bologna, 1881. Episodes, 27, 13–20.Google Scholar
  81. von Bubnoff, S. (1919). Über einige grundlegende Prinzipien der paläontologischen Systematik. Zeitschrift für induktive Abstammungs- und Vererbungslehre, 21, l58–l68.Google Scholar
  82. von Bubnoff, S. (1921). Die ladinische Fauna von Forno (Mezzovalle) bei Predazzo. Heidelberg: Carl Winters Universitätsbuchhandlung.Google Scholar
  83. Waagen, W. H. (1869). Die Formenreihe des Ammonites subradiatus: Versuch einer paläontologischen Monographie. Geognostisch-Paläontologische Beiträge, 2, 179–256.Google Scholar
  84. Wedekind, R. (1916). Über die Grundlagen und Methoden der Biostratigraphie. Berlin: Gebrüder Borntraeger.Google Scholar
  85. Williams, H. S. (1895). Geological biology. New York: Henry Holt and Company.Google Scholar
  86. Witteveen, J. (2015). “A temporary oversimplification”: Mayr, Simpson, Dobzhansky, and the origins of the typology/population dichotomy (part 1 of 2). Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 54, 20–33.CrossRefGoogle Scholar
  87. Wittmann, B. (2013). Outlining species: Drawing as a research technique in contemporary biology. Science in Context, 26, 363–391.CrossRefGoogle Scholar
  88. Zammito, J. H. (2017). The gestation of German biology. Philosophy and physiology from Stahl to Schelling. Chicago: University of Chicago Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für PhilosophieTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations