The impacts of assumptions on theories of tooth development and evolution at the turn of the nineteenth century

  • Kate MacCordEmail author
Original Paper
Part of the following topical collections:
  1. Shaping the History of the Paleosciences


Throughout the last quarter of the nineteenth century, researchers became increasingly interested in explaining the ways in which mammalian teeth, especially molars, and their complex arrangements of cusps arose along both developmental and evolutionary timescales. By the 1890s, two theories garnered special prominence; the tritubercular theory and the concrescence theory. The tritubercular theory was proposed by Edward Drinker Cope in 1883, and later expanded by Henry Fairfield Osborn in 1888, while the concrescence theory was developed by Carl Röse in 1892. Reviews concerning the evolution of mammalian molar teeth tended to paint the two theories as occupying opposing sides, and debates arose between their main proponents; however, their tenets do not seem logically incompatible. Throughout this paper, I argue that the conflict that arose was due not to the content of the theories, but to a diverse array of commitments Cope, Osborn, and Röse held, which turned into background assumptions within the setting of these theories. This history traces the context in which Cope, Osborn, and Röse developed the tritubercular and concrescence theories, and the ways in which the assumptions that these investigators held influenced their perceptions of their theories.


Evolution Development Biogenetic law Homology Teeth 



The author would like to acknowledge the James S. McDonnell Foundation, the Fulbright Foundation (Finland), and the Center for Biology and Society at Arizona State University for their generous support of this research. I would also like to thank Elizabeth Dobson-Jones and Paige Madison for their contributions to the HSS Session, titled “Assumptions in Paleontology” that led to this article and special section, and Michael Ruse for acting as chair of the session. Dobson-Jones is due an enormous credit for her efforts on the special section in which this article is published, and Adrian Currie, Paige Madison, and Caitlin Wylie have my utmost respect for their original contributions to this special section. Thanks are also due to Kathryn Maxson Jones for her editorial comments, and to Jane Maienschein for her encouragement throughout the writing of this article, and the preparation of the HSS session and this special section.


  1. Adloff, P. (1913). Zur Entwicklungsgeschichte des menschlichen Zahnsystems nebst Bemerkungen zur Frage der prälaktealen Dentition, der sogenannten Konkreszenztheorie und der Entwicklung des Säugetiergebisses überhaupt. Archiv für Mikroskopische Anatomie, 82(1), 1–38.Google Scholar
  2. Ahrens, H. (1913). Die Entwickelung der menschlichen Zähne. Anatomische Hefte, 48, 167–266.Google Scholar
  3. Amundson, R. (2005). The changing role of the embryo in evolutionary thought: Roots of evo-devo. Cambridge: Cambridge University Press.Google Scholar
  4. Appel, T. A. (1987). The Cuvier-Geoffroy debate: French biology in the decades before Darwin. Oxford: Oxford University Press on Demand.Google Scholar
  5. Benson, K. R. (1981). Problems of individual development: Descriptive embryological morphology in America at the turn of the century. Journal of the History of Biology, 14(1), 115–128.Google Scholar
  6. Born, G. (1883). Die Plattenmodellimethode. Archiv für Mikroskopische Anatomie, 22, 584–599.Google Scholar
  7. Bowler, P. J. (1977). Edward drinker cope and the changing structure of evolutionary theory. Isis, 68(2), 249–265.Google Scholar
  8. Brigandt, I. (2010). Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis, 73(3), 295–311.Google Scholar
  9. Buffon, G. L. L. (1831). Buffon’s natural history of the globe, and of man; beasts, birds, fishes, reptiles, and insects. Translated by John Wright. London: Thomas Tegg.Google Scholar
  10. Butler, P. M. (1941). A theory of the evolution of mammalian molar teeth. American Journal of Science, 239(6), 421–450.Google Scholar
  11. Casado, A., Romero, M., & Cataño, A. (2000). The origins of school dentistry in Spain. Journal of the History of Dentistry, 48(3), 107–109.Google Scholar
  12. Churchill, F. B. (1991). The rise of classical descriptive embryology. In S. F. Gilbert (Ed.), A conceptual history of modern embryology (pp. 1–29). Berlin: Springer.Google Scholar
  13. Churchill, F. B. (2007). Living with the biogenetic law: A reappraisal. In M. D. Laubichler & J. Maienschein (Eds.), From embryology to Evo Devo: A history of developmental evolution. Cambridge, MA: MIT Press.Google Scholar
  14. Coleman, W. (1971). Biology in the nineteenth century: Problems of form, function and transformation. Cambridge: Cambridge University Press.Google Scholar
  15. Coleman, W. (1976). Morphology between type concept and descent theory. Journal of the History of Medicine and Allied Sciences, 31(2), 149–175.Google Scholar
  16. Cope, E. D. (1865). On Amphibamus grandiceps, a new batrachian from the coal measures. Proceedings of the National Academy of Sciences of Philadelphia, 17, 134–137.Google Scholar
  17. Cope, E. D. (1868). On the origin of genera. Proceedings of the Academy of Natural Sciences of Philadelphia, 20, 242–300.Google Scholar
  18. Cope, E. D. (1871). The method of creation of organic forms. Proceedings of the American Philosophical Society, 12, 229–263.Google Scholar
  19. Cope, E. D. (1873). On the homologies and origin of the types of molar teeth of Mammalia educabilia. Journal of the Academy of Natural Sciences of Philadelphia, 2(8), 71–92.Google Scholar
  20. Cope, E. D. (1883a). Note on the trituberculate type of superior molar and the origin of the quadrituberculate. The American Naturalist, 17, 407–408.Google Scholar
  21. Cope, E. D. (1883b). On the trituberculate type of molar tooth in the Mammalia. Proceedings of the American Philosophical Society, 21(114), 324–326.Google Scholar
  22. Cope, E. D. (1894). The energy of evolution. The American Naturalist, 28(327), 205–219.Google Scholar
  23. Cope, E. D. (1904). The primary factors of organic evolution. Chicago: Open Court.Google Scholar
  24. Esposito, M. (2013). Weismann versus morgan revisited: Clashing interpretations on animal regeneration. Journal of the History of Biology, 46(3), 511–541.Google Scholar
  25. Farber, P. L. (1976). The type-concept in zoology during the first half of the nineteenth century. Journal of the History of Biology, 9(1), 93–119.Google Scholar
  26. Fattorini, S. (2017). The Watson–Forbes biogeographical controversy untangled 170 years later. Journal of the History of Biology, 50, 473–496.Google Scholar
  27. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
  28. Gregory, W. K. (1916). Studies on the evolution of the primates, part I: The Cope-Osborn ‘Theory of Trituberculy’ and the Ancestral molar patterns of the primates. Bulletin of the American Museum of Natural History, 35, 239–355.Google Scholar
  29. Gregory, W. K. (1934). A half century of trituberculy: The Cope-Osborn theory of dental evolution with a revised summary of molar evolution from fish to man. Proceedings of the American Philosophical Society, 73(4), 169–317.Google Scholar
  30. Guralnick, R. (2002). A recapitulation of the rise and fall of the cell lineage research program: The evolutionary-developmental relationship of cleavage to homology, body plans and life history. Journal of the History of Biology, 35, 537–567.Google Scholar
  31. Haeckel, E. (1866). Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie (Vol. 2). Berlin: Reimer.Google Scholar
  32. Heidel, C. P., & Heidel, G. (1984). Carl Röse’s scientific merits concerning the etiology of caries and social dentistry. Stomatologie der DDR, 34(3), 173.Google Scholar
  33. Hertwig, O. (1874). Über das Zahnsystem der Amphibien und seine Bedeutung für die Genese des Skeletts der Mundhöhle. Archiv für Mikroskopische Anatomie, 11, 1–208.Google Scholar
  34. Hopwood, N. (2015). Haeckel’s embryos: Images, evolution, and fraud. Chicago: University of Chicago Press.Google Scholar
  35. Huxley, T. H. (1853). On the development of the teeth, and on the nature and import of Nasmyth’s ‘Persistent Capsule’. Quarterly Journal of Microscopical Science, 1, 149–164.Google Scholar
  36. Jernvall, J. (1995). Mammalian molar cusp patterns: Developmental mechanisms of diversity. Acta Zoologica Fennica, 198, 1–61.Google Scholar
  37. Krogman, W. M. (1927). Anthropological aspects of the human teeth and dentition. Journal of Dental Research, 7(1), 1–108.Google Scholar
  38. Kükenthal, W. (1891). Einige Bemerkungen über die Säugetierbezahnung. Anatomischer Anzeiger, 6, 364–370.Google Scholar
  39. Laubichler, M. D. (2000). Homology in development and the development of homology. American Zoologist, 40(5), 777–788.Google Scholar
  40. Lenoir, T. (1981). The Göttingen School and the development of transcendental Naturphilosophie in the Romantic Era. Studies in History of Biology, 5, 111.Google Scholar
  41. Lenoir, T. (1987). The eternal laws of form: Morphotypes and the conditions of existence in Goethe’s biological thought. In R. Amrine, F. J. Zucker, & H. Wheeler (Eds.), Goethe and the sciences: A reappraisal (pp. 17–28). Netherlands: Springer.Google Scholar
  42. Longino, H. E. (1979). Evidence and hypothesis: An analysis of evidential relations. Philosophy of Science, 46(1), 35–56.Google Scholar
  43. Love, A. C. (2006). Evolutionary morphology and evo-devo: Hierarchy and novelty. Theory in Biosciences, 124(3–4), 317–333.Google Scholar
  44. Luo, Z.-X., Cifelli, R. L., & Kielan-Jaworowska, Z. (2001). Dual origin of tribosphenic mammals. Nature, 409(6816), 53–57.Google Scholar
  45. Luo, Z.-X., Ji, Q., & Yuan, C.-X. (2007). Convergent dental adaptations in pseudotribosphenic and tribosphenic mammals. Nature, 450(7166), 93–97.Google Scholar
  46. Maienschein, J. (1978). Cell lineage, ancestral reminiscence, and the biogenetic law. Journal of the History of Biology, 11(1), 129–158.Google Scholar
  47. Maienschein, J. (1981). Shifting assumptions in American biology: Embryology, 1890–1910. Journal of the History of Biology, 14(1), 89–113.Google Scholar
  48. Maienschein, J. (1991). Transforming traditions in American biology. Baltimore: Johns Hopkins University Press.Google Scholar
  49. Marsh, O. (1879). Notice of a New Jurassic Mammal. The American Journal of Science, 18, 60.Google Scholar
  50. Mummery, J. H. (1893). A description of Dr. Röse’s models of the development of the teeth. Transactions of the Odontological Society of Great Britain, XXV, 187–195.Google Scholar
  51. Nickol, T. (1992). Das Wissenschaftliche Werk des Arztes und Zahnarztes Carl Röse (1864–1947). Frankfurt am Main: Peter Lang.Google Scholar
  52. Nyhart, L. K. (1987). The disciplinary breakdown of German morphology, 1870–1900. Isis, 78(3), 365–389.Google Scholar
  53. Nyhart, L. K. (1995). Biology takes form: Animal morphology and the German universities, 1800–1900. Chicago: The University of Chicago Press.Google Scholar
  54. Osborn, H. F. (1888a). On the structure and classification of the Mesozoic Mammalia. Journal of the Academy of Natural Sciences of Philadelphia, 2(9), 186–265.Google Scholar
  55. Osborn, H. F. (1888b). The evolution of mammalian molars to and from the tritubercular type. The American Naturalist, 22, 1067–1079.Google Scholar
  56. Osborn, H. F. (1888c). The nomenclature of the mammalian molar cusps. The American Naturalist, 22, 926–928.Google Scholar
  57. Osborn, H. F. (1892). The history and homologies of the human molar cusps. Anatomische Anzeiger, 7, 740–747.Google Scholar
  58. Osborn, H. F. (1893). The rise of Mammalia in North America: Address (Vol. 1). Boston: Ginn.Google Scholar
  59. Osborn, H. F. (1895). The history of the cusps of the human molar teeth. Proceedings of the New York Institute of Stomatology, 1, 1–27.Google Scholar
  60. Osborn, H. F. (1897). Trituberculy: A review dedicated to the late Professor Cope. The American Naturalist, 31, 993–1016.Google Scholar
  61. Osborn, H. F. (1907). Evolution of mammalian molar teeth (Vol. 1). London: Macmillan.Google Scholar
  62. Ospovat, D. (1976). The influence of Karl Ernst von Baer’s embryology, 1828–1859: A reappraisal in light of Richard Owen’s and William B. Carpenter’s ‘palaeontological application of von Baer’s Laws. Journal of the History of Biology, 9, 1–28.Google Scholar
  63. Owen, R. (1840–1845). Odontography, or a treatise on the comparative anatomy of the teeth; their physiological relations, mode of development, and microscopic structure in the vertebrate animals. London: Hippolyte Bailliere.Google Scholar
  64. Owen, R. (1843). Lectures on the comparative anatomy and physiology of the invertebrate animals. London: Longman, Brown, Green, and Longman.Google Scholar
  65. Rainger, R. (1981). The continuation of the morphological tradition: American paleontology, 1880–1910. Journal of the History of Biology, 14(1), 129–158.Google Scholar
  66. Rainger, R. (1985). Paleontology and philosophy: A critique. Journal of the History of Biology, 18(2), 267–287.Google Scholar
  67. Rainger, R. (1991). An agenda for antiquity: Henry Fairfield Osborn and vertebrate paleontology at the American museum of natural history, 1890–1935. Tuscaloosa: The University of Alabama Press.Google Scholar
  68. Rasmussen, N. (1991). The decline of recapitulationism in early twentieth-century biology: Disciplinary conflict and consensus on the battleground of theory. Journal of the History of Biology, 24(1), 51–89.Google Scholar
  69. Richards, R. (2008). The tragic sense of life: Ernst Haeckel and the struggle over evolutionary thought. Chicago: University of Chicago Press.Google Scholar
  70. Rinard, R. G. (1981). The problem of the organic individual: Ernst Haeckel and the development of the biogenetic law. Journal of the History of Biology, 14(2), 249–275.Google Scholar
  71. Robert, J. S. (2004). Embryology, epigenesis and evolution: Taking development seriously (p. 2004). Cambridge: Cambridge University Press.Google Scholar
  72. Röse, C. (1890). Beiträge zur vergleichenden Anatomie des Herzens der Wirbelthiere. Morphologisches Jahrbuch, 16, 27–96.Google Scholar
  73. Röse, C. (1891). Ueber die Entwicklung der Zähne des Menschen. Archiv für mikroskopische Anatomie, 38, 447–491.Google Scholar
  74. Röse, C. (1892a). Uber die Entstehung und Formabänderungen der menschlichen Molaren. Anatomischer Anzeiger, 7, 392–421.Google Scholar
  75. Röse, C. (1892b). Beiträge zur Zahnentwicklung der Edentaten. Anatomischer Anzeiger, 7, 495–512.Google Scholar
  76. Röse, C. (1892c). Ueber die Zahnentwicklung der Beuteltiere. Anatomischer Anzeiger, 7, 639–650.Google Scholar
  77. Röse, C. (1892d). Zur Phylogenie des Säugertiergebisses. Biologisches Zentralblatt, 12, 624–638.Google Scholar
  78. Röse, C. (1892e). Ueber die Zahnentwicklung der Krokodile. In Verhandlungen der Anatomischen Gesellschaft, 6th meeting (pp. 225–226).Google Scholar
  79. Röse, C. (1892f). Ueber die Zahnentwicklung der Reptilien. Deutsche Monatsschrift für Zahnheilkunde, 10, 127–149.Google Scholar
  80. Röse, C. (1893). Ueber den Zahnbau und Zahnwechsel von Elephas indicus. Schwalbe’s Morphologische Arbeiten, III, 173–194.Google Scholar
  81. Rudwick, M. J. S. (2008). Georges Cuvier, fossil bones, and geological catastrophes: New translations and interpretations of the primary texts. Chicago: University of Chicago Press.Google Scholar
  82. Russell, E. S. (1916). Form and function: A contribution to the history of animal morphology. London: John Murray.Google Scholar
  83. Simpson, G. G. (1936). Studies of the earliest mammalian dentitions. Dental Cosmos, 78(8), 791–800.Google Scholar
  84. Tims, H. W. M. (1903). The evolution of the teeth in the Mammalia. Journal of Anatomical Physiology, 37(2), 131–149.Google Scholar
  85. Wortman, J. L. (1903). Studies of eocene Mammalia in the marsh collection, peabody museum. American Journal of Science, 16, 245–368.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations