Waddington’s epigenetics or the pictorial meetings of development and genetics

  • Antonine NicoglouEmail author
Original Paper
Part of the following topical collections:
  1. Sketches of a Conceptual History of Epigenesis


In 1956, in his Principles of Embryology, Conrad Hal Waddington explained that the word “epigenetics” should be used to translate and update Wilhelm Roux’ German notion of “Entwicklungsmechanik” (1890) to qualify the studies focusing on the mechanisms of development. When Waddington mentioned it in 1956, the notion of epigenetics was not yet popular, as it would become from the 1980s. However, Waddington referred first to the notion in the late 1930s. While his late allusion clearly reveals that Waddington readily associated the notion of epigenetics with the developmental process, in the contemporary uses of the notion this developmental connotation seems to have disappeared. The advent and success of molecular biology have probably contributed to focusing biologists’ attention on the “genetic” or the “non-genetic” over the “developmental”. In the present paper, I first examine the links that exist, in Waddington’s work, between the classical notion of epigenesis in embryology and those of epigenetics that Waddington proposed to connect, and even synthesize, data both from embryology and genetics. Second, I show that Waddington’s own view of epigenetics has changed over time and I analyze how these changes appear through his many representations (both schematic or metaphorical images) of the relationships between genetic signals and developmental processes.


Epigenetics Epigenesis Waddington Pictorial representations Evo-devo Development 



I thank Charles Wolfe, Staffan Müller-Wille and Ohad Parnes for comments and insights on previous versions of this article. This work was supported financially by the “Who am I?” Laboratory of Excellence (ANR-11-LABX- 0071) funded by the French government through its “Investments for the Future” Program operated by the French National Research Agency (ANR) under Grant No ANR-11-IDEX-0005-02.


  1. Baedke, J. (2013). The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4), 756–773.CrossRefGoogle Scholar
  2. Bard, J. B. L. (2008). Waddington’s legacy to developmental and theoretical biology. Biological Theory, 3(3), 188–197.CrossRefGoogle Scholar
  3. Davidson, E. H. (2006). The regulatory genome: Gene regulatory networks in development and evolution. San Diego: Academic Press.Google Scholar
  4. Davidson, E. H. (2009). Network design principles from the sea urchin embryo. Current Opinion in Genetics and Development, 19, 535–540.CrossRefGoogle Scholar
  5. Davidson, E. H. (2010). Emerging properties of animal gene regulatory networks. Nature, 468, 911–920.CrossRefGoogle Scholar
  6. Davidson, E. H., & Levin, M. (2005). Gene regulatory networks. In Proceedings of the National Academy of Sciences of the United States of America, 102(14): 4935–4935.Google Scholar
  7. Driesch, H. (1892). Entwicklungsmechanische Studien I–II. Zeitschrift für wissenschaftliche Zoologie, 53, 160–184.Google Scholar
  8. Driesch, H. (1893). Zur Verlagerung der Blastomeren des Echinideies. Anatomischer Anzeiger, 8, 348–357.Google Scholar
  9. Driesch, H., & Morgan, T. H. (1896). Zur Analyse der ersten Entwicklungsstadien des Ctenophoreneies. Archiv für Entwicklungsmechanik der Organismen, 2, 204–224.CrossRefGoogle Scholar
  10. Dupont, J.-C. (2017). Wilhelm His and mechanistic approaches to development at the time of Entwicklungsmechanik. History and Philosophy of the Life Sciences, 39(3), 21.CrossRefGoogle Scholar
  11. Dupont, J.-C., & Schmitt, S. (2004). Du feuillet au gène: une histoire de l’embryologie moderne, fin XVIIIe-XXe siècle. Paris: Rue d’Ulm.CrossRefGoogle Scholar
  12. Felsenfeld, G. (2014). A brief history of epigenetics. Cold Spring Harbour Perspectives in Biology, 6(1), a018200.CrossRefGoogle Scholar
  13. Galperin, C. (2008). Conrad Hall Waddington ou comment l’épigénétique réunit l’embryologie et la génétique. In P.-A. Miquel (Ed.), Biologie du XXIe siècle: Évolution des concepts fondateurs (pp. 131–158). Bruxelles: de Boeck.Google Scholar
  14. Gilbert, S. F. (1991a). Epigenetic landscaping: Waddington’s use of cell fate bifurcation diagrams. Biology and Philosophy, 6, 135–154.CrossRefGoogle Scholar
  15. Gilbert, S. F. (1991b). Induction and the origins of developmental genetics. In S. Gilbert (Ed.), A conceptual history of modern embryology. New York: Plenum Press.CrossRefGoogle Scholar
  16. Gilbert, S. F., & Browder, L. W. (1991). A conceptual history of modern embryology. Berlin: Springer.CrossRefGoogle Scholar
  17. Gilbert, S. F., & Burian, R. M. (2003). Development, evolution, and evolutionary developmental biology. In B. K. Hall & W. M. Olson (Eds.), Keywords and concepts in evolutionary developmental biology (pp. 61–68). Cambridge, MA: Harvard University Press.Google Scholar
  18. Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: A landscape takes shape. Cell, 128(4), 635–638.CrossRefGoogle Scholar
  19. Gould, S. J. (1977). Ontogeny and phylogeny. Harvard: Harvard University Press.Google Scholar
  20. Goy, I. (2018). Was Aristotle the ‘father’ of the epigenesis doctrine? History and Philosophy of the Life Sciences, 40(2), 28.CrossRefGoogle Scholar
  21. Haecker, V. (1918). Entwicklungsgeschichtliche Eigenschaftsanalyse (Phänogenetik): Gemeinsame Aufgabe der Entwicklungsgeschichte, Vererbungs- und Rassenlehre. Jena: G. Fischer.Google Scholar
  22. Haig, D. (2004). The (dual) origin of epigenetics. Cold Spring Harbor Symposia on Quantitative Biology, 69, 67–70.CrossRefGoogle Scholar
  23. Hall, B. K. (2012). Evolutionary developmental biology. Berlin: Springer.Google Scholar
  24. Hall, B. K., & Laubichler, M. D. (2009). Conrad Hal Waddington, theoretical biology, and evo–devo. Biological Theory, 3(3), 185–289.Google Scholar
  25. Hall, B. K., & Olson, W. M. (2003). Keywords and concepts in evolutionary developmental biology. Cambridge, MA: Harvard University Press.Google Scholar
  26. Hertwig, O., & Hertwig, R. (1887). Über den Befruchtungs- und Theilungsvorgang des thierischen Eies unter den Einfluss äusserer Agentien. Jenaische Zeitschrift für Naturwissenschaft, 20, 477–510.Google Scholar
  27. Johannsen, W. (1911). The genotype conception of heredity. The American Naturalist, 45(531), 59–129.CrossRefGoogle Scholar
  28. Laubichler, M. D., & Hall, B. K. (2008). Conrad Hal Waddington: Forefather of theoretical EvoDevo. Biological Theory, 3(3), 185–187.CrossRefGoogle Scholar
  29. Maienschein, J. (2012). Epigenesis and preformationism. In Zalta, E.N. (ed.) The stanford encyclopedia of philosophy.
  30. Morange, M. (2009). What history tells us XVII. Conrad Waddington and the nature of life. Journal of Biosciences, 34(2), 195–198.CrossRefGoogle Scholar
  31. Morgan, T. H. (1934). Embryology and genetics. New York: Columbia University Press.Google Scholar
  32. Needham, J., Waddington, C. H., Needham, D. M. (1934). Physico-chemical experiments on the amphibian organizer. In Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Characters, 114(789): 393–422.Google Scholar
  33. Nicoglou, A. (2015). The evolution of phenotypic plasticity: Genealogy of a debate in genetics. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 50, 67–76.CrossRefGoogle Scholar
  34. Nicoglou, A., & Merlin, F. (2017). Epigenetics: A way to bridge the gap between biological fields. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 66, 73–82.CrossRefGoogle Scholar
  35. Noble, D. (2015). Conrad Waddington and the origin of epigenetics. Journal of Experimental Biology, 218(6), 816–818.CrossRefGoogle Scholar
  36. Odling-Smee, J. F., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Monographs in population biology (Vol. 37). New Jersey: Princeton University Press.Google Scholar
  37. Peterson, E. (2017a). The life organic: The theoretical biology club and the roots of epigenetics. Pittsburgh: University of Pittsburgh Press.CrossRefGoogle Scholar
  38. Peterson, E. (2017b). So far like the present period’: A reply to C.H. Waddington’s differences with the creators of the modern evolutionary synthesis: A tale of two genes. History and Philosophy of the Life Sciences, 39(3), 19.CrossRefGoogle Scholar
  39. Robertson, A. (1977). ‘Conrad Hal Waddington: 8 November 1905–26 September 1975′. Biographical Memoirs: Fellows of the Royal Society, 23, 575–622.CrossRefGoogle Scholar
  40. Roux, W. (1894). The problems, methods, and scope of developmental mechanics. Biological Lectures of the Marine Biology Laboratory, Woods Hole (Vol. 3, pp. 149–190). Boston: Ginn.Google Scholar
  41. Sinnott, D. W., Dunn, L. C., & Dobzhansky, T. (1950). Principle of genetics. New York: Mcgraw-Hill Book Company.Google Scholar
  42. Slack, J. M. W. (2002). Conrad Hal Waddington: The last Renaissance biologist? Nature Reviews Genetics, 3, 889–895.CrossRefGoogle Scholar
  43. Spemann, H., & Mangold, O. (1924). Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Archiv für Entwicklungsmechanick der Organismen, 100, 599–638.Google Scholar
  44. Stotz, K., & Griffiths, P. (2016). Epigenetics: ambiguities and implications. History and Philosophy of the Life Sciences, 38(22).
  45. Van Speybroeck, L. (2002). From epigenesis to epigenetics. Annals of the New York Academy of Sciences, 981(1), 61–81.CrossRefGoogle Scholar
  46. Virchow, R. (1978). Cellular pathology as based upon physiological and pathological history: Twenty lectures delivered in the Pathological Institute of Berlin during the months of February, March, and April, 1858 (Special ed.). Birmingham, Ala.: Classics of Medicine Library.Google Scholar
  47. Waddington, C. H. (1930). Developmental mechanics of chicken and duck embryos. Nature, 125, 924.CrossRefGoogle Scholar
  48. Waddington, C. H. (1932). Experiments on the development of chick and duck embryos cultivated in vitro. Philosophical Transactions of the Royal Society London, B, 221, 179–230.CrossRefGoogle Scholar
  49. Waddington, C. H. (1935). How animals develop. London: Allen and Unwin.Google Scholar
  50. Waddington, C. H. (1939). An introduction to modern genetics. London: Allen and Unwin.Google Scholar
  51. Waddington, C. H. (1940). Organisers and genes. Cambridge: Cambridge University Press.Google Scholar
  52. Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18–20.Google Scholar
  53. Waddington, C. H. (1954). The integration of gene controlled processes and its bearing on evolution. Atti del IX Congresso Internazionale di Genetica Publicati come supplemento al volume VI Caryologia, 232–245.Google Scholar
  54. Waddington, C. H. (1956). Principles of Embryology. London: George Allen and Unwin Ltd., 1956.
  55. Waddington, C. H. (1957). The strategy of the genes. London: Allen and Unwin.Google Scholar
  56. Waddington, C. H. (1959). Evolutionary systems-animal and human. Nature, 183, 1634–1638.CrossRefGoogle Scholar
  57. Waddington, C. H., Needham, J., & Needham, D. M. (1933). Physico-chemical experiments on the amphibian organiser. Nature, 132, 239.CrossRefGoogle Scholar
  58. Weinhold, B. (2006). Epigenetics: The science of change. Environmental Health Perspectives, 114(3), A67–160.CrossRefGoogle Scholar
  59. West-Eberhard, M.-J. (2003). Developmental plasticity and evolution. New York: Oxford University Press.Google Scholar
  60. Willier, B. H., & Oppenheimer, J. M. (1974). Foundations of experimental embryology. Royal Oak: Hafner Press.Google Scholar
  61. Wilson, E. B. (1893). The mosaic theory of development. Biological Lectures from the Marine Biological Laboratory, 2, 1–14.Google Scholar
  62. Wilson, E. B. (1896). The Cell in Development and Inheritance, New York: Macmillan. (2nd ed. 1900).Google Scholar
  63. Wilson, E. B. (1898). Cell-lineage and ancestral reminiscence. Biological Lectures from the Marine Biological Laboratory, 21–42.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.CRPMS and IJMUniversity of Paris 7ParisFrance
  2. 2.IHPST ParisParisFrance

Personalised recommendations