Advertisement

Robot life: simulation and participation in the study of evolution and social behavior

  • Christopher M. KeltyEmail author
Original Paper
Part of the following topical collections:
  1. Computer Simulation in the Life Sciences

Abstract

This paper explores the case of using robots to simulate evolution, in particular the case of Hamilton’s Law. The uses of robots raises several questions that this paper seeks to address. The first concerns the role of the robots in biological research: do they simulate something (life, evolution, sociality) or do they participate in something? The second question concerns the physicality of the robots: what difference does embodiment make to the role of the robot in these experiments. Thirdly, how do life, embodiment and social behavior relate in contemporary biology and why is it possible for robots to illuminate this relation? These questions are provoked by a strange similarity that has not been noted before: between the problem of simulation in philosophy of science, and Deleuze’s reading of Plato on the relationship of ideas, copies and simulacra.

Keywords

Simulation Evolution Robots Participation Social behavior Deleuze 

Notes

Acknowledgements

This paper is a revised and expanded version of a chapter with the same title that appeared in the volume Research Objects in their Technological Setting, edited by Bernadette Bensaude-Vincent, Sacha Loeve, Alfred Nordmann, and Astrid Schwartz (New York: Routledge, 2017). I thank the editors of this volume for their permission to publish this revised version, and for their editorial and intellectual assistance. I also thank Janina Wellman and the MECS group at Leuphana University for the invitation to present this work and to include it in this series, and the editor of HPLS and three anonymous reviewers for detailed and helpful criticisms.

References

  1. Arendt, H. (1958). The human condition. Chicago: University of Chicago Press. http://ucla.worldcat.org/title/human-condition/oclc/259560&referer=brief_results. Accessed 11 January 2013.
  2. Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., et al. (2009). Cognitive developmental robotics: A survey. IEEE Transactions on Autonomous Mental Development.  https://doi.org/10.1109/TAMD.2009.2021702.Google Scholar
  3. Bar-Cohen, Y. (2005). Biomimetics: Biologically inspired technologies (Google eBook) (Vol. 2005). Boca Raton: CRC Press. http://books.google.com/books?id=uIoDZzy-EioC&pgis=1. Accessed 23 April 2013.
  4. Bensaude-Vincent, B. (2009). Self-assembly, self-organization: Nanotechnology and vitalism. NanoEthics, 3(1), 31–42.  https://doi.org/10.1007/s11569-009-0056-0.CrossRefGoogle Scholar
  5. Bergner, R. M. (2011). What is behavior? And so what? New Ideas in Psychology, 29(2), 147–155.  https://doi.org/10.1016/j.newideapsych.2010.08.001.CrossRefGoogle Scholar
  6. Berthouze, L., & Metta, G. (2005). Epigenetic robotics: Modelling cognitive development in robotic systems. Cognitive Systems Research, 6(3), 189–192.  https://doi.org/10.1016/j.cogsys.2004.11.002.CrossRefGoogle Scholar
  7. Berthouze, L., & Ziemke, T. (2003). Epigenetic robotics—Modelling cognitive development in robotic systems. Connection Science, 15(4), 147–150.  https://doi.org/10.1080/09540090310001658063.CrossRefGoogle Scholar
  8. Chrisley, R., & Ziemke, T. (2006). Embodiment. In Encyclopedia of cognitive science. New York: Wiley.  https://doi.org/10.1002/0470018860.s00172.
  9. Clark, A. (1998). Being there: Putting brain, body, and world together again. Cambridge: MIT Press. https://books.google.com/books?id=i03NKy0ml1gC.
  10. Creager, A. N. H., Lunbeck, E., & Wise, M. N. (2007). Science without laws: Model systems, cases, exemplary narratives. Durham: Duke University Press.CrossRefGoogle Scholar
  11. Dasgupta, D. (Dipankar), & Michalewicz, Z. (2013). Evolutionary algorithms in engineering applications. In D. (Dipankar) Dasgupta & Z. Michalewicz (Eds.). Heidelberg. https://books.google.com/books?id=g4urCAAAQBAJ&dq=%2522use+of+genetic+algorithms%2522+engineering+review&lr=&source=gbs_navlinks_s. Accessed 8 June 2017.
  12. Deleuze, G. (1983). Nietzsche and philosophy. New York: Columbia University Press. http://melvyl.worldcat.org/title/nietzsche-and-philosophy/oclc/8763853&referer=brief_results. Accessed 15 October 2013.
  13. Deleuze, G. (1990). The logic of sense. New York: Columbia University Press. http://melvyl.worldcat.org/title/logic-of-sense/oclc/19723001&referer=brief_results. Accessed 15 October 2013.
  14. Deleuze, G. (1994). Difference and repetition. New York: Columbia University Press. http://melvyl.worldcat.org/title/difference-and-repetition/oclc/29315323&referer=brief_results. Accessed 15 October 2013.
  15. Dennett, D. (1995). Darwin’s dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster. http://ucla.worldcat.org/title/darwins-dangerous-idea-evolution-and-the-meanings-of-life/oclc/31867409&referer=brief_results. Accessed 23 April 2013.
  16. Dreyfus, H. (1999). What computers still can’t do: A critique of artificial reason (6. print.). Cambridge: MIT Press. http://www.worldcat.org/title/what-computers-still-cant-do-a-critique-of-artificial-reason/oclc/249027531. Accessed 29 April 2013.
  17. Dupré, J., & Malley, M. A. O. (2009). Varieties of living things: Life at the intersection of lineage and metabolism. Philosophy of Theoretical Biology, 1(e003), 1–25.Google Scholar
  18. Dutreuil, S. (2014). What good are abstract and what-if models? Lessons from the Gaïa hypothesis. History and Philosophy of the Life Sciences, 36(1), 16–41.  https://doi.org/10.1007/s40656-014-0003-4.CrossRefGoogle Scholar
  19. Edwards, P. (2010). A vast machine: Computer models, climate data, and the politics of global warming. Cambridge: MIT Press. http://ucla.worldcat.org/title/vast-machine-computer-models-climate-data-and-the-politics-of-global-warming/oclc/430736496&referer=brief_results. Accessed 5 January 2013.
  20. Eiben, A. E., & Smith, J. (2015). From evolutionary computation to the evolution of things. Nature, 521(7553), 476–482.  https://doi.org/10.1038/nature14544.CrossRefGoogle Scholar
  21. Emmeche, C. (1996). The garden in the machine: The emerging science of artificial life. Princeton: Princeton University Press. http://books.google.com/books?id=MU-5GAF0qsIC&pgis=1. Accessed 12 January 2011.
  22. Floreano, D., & Keller, L. (2010). Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biology, 8(1), e1000292.  https://doi.org/10.1371/journal.pbio.1000292.CrossRefGoogle Scholar
  23. Floreano, D., Mitri, S., Magnenat, S., & Keller, L. (2007). Evolutionary conditions for the emergence of communication in robots. Current Biology: CB, 17(6), 514–519.  https://doi.org/10.1016/j.cub.2007.01.058.CrossRefGoogle Scholar
  24. Franklin, L. R. (2005). Exploratory experiments. Philosophy of Science, 72(5), 888–899.CrossRefGoogle Scholar
  25. Garnier, S. (2011). From ants to robots and back: How robotics can contribute to the study of collective animal behavior. In Y. Jin & Y. Meng (Eds.), Bio-inspired self-organizing robotic systems (pp. 105–120). Berlin: Springer.CrossRefGoogle Scholar
  26. Gilbert, S. F., & Epel, D. (2009). Ecological developmental biology: Integrating epigenetics, medicine. Sunderland: Sinauer Associates. http://books.google.com/books?id=lA5SPQAACAAJ&pgis=1. Accessed 18 March 2011.
  27. Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view of life: We have never been individuals. The Quarterly Review of Biology, 87(4), 325–341.  https://doi.org/10.1086/668166.CrossRefGoogle Scholar
  28. Goldberg, D., & Holland, J. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2–3), 95–99.  https://doi.org/10.1023/A:1022602019183.CrossRefGoogle Scholar
  29. Gould, Stephen J. (2011). Full house : The spread of excellence from Plato to Darwin. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
  30. Grune-Yanoff, T., & Weirich, P. (2010). The philosophy and epistemology of simulation: A review. Simulation & Gaming, 41(1), 20–50.  https://doi.org/10.1177/1046878109353470.CrossRefGoogle Scholar
  31. Hamilton, W. D. (1964). The genetical evolution of social behaviour. I. Journal of Theoretical Biology, 7(1), 1–16.  https://doi.org/10.1016/0022-5193(64)90038-4.CrossRefGoogle Scholar
  32. Hayles, K. (1999). How we became posthuman: Virtual bodies in cybernetics, literature, and informatics. Chicago: University of Chicago Press. https://books.google.com/books?id=JqB6Qy9z3TcC&dq=how+we+became+posthuman&source=gbs_navlinks_s. Accessed 8 June 2017.
  33. Helmreich, S. (1998). Recombination, rationality, reductionism and romantic reactions: Culture, computers, and the genetic algorithm. Social Studies of Science, 28(1), 39–71.  https://doi.org/10.1177/030631298028001002.CrossRefGoogle Scholar
  34. Helmreich, S. (2003). Trees and seas of information: Alien kinship and the biopolitics of gene transfer in marine biology and biotechnology. American Ethnologist, 30(3), 340–358.  https://doi.org/10.1525/ae.2003.30.3.340.CrossRefGoogle Scholar
  35. Holland, J. H. (2006). Genetic algorithms and the optimal allocation of trials. http://epubs.siam.org/doi/abs/10.1137/0202009. Accessed 23 April 2013.
  36. Holland, O. (2001). Artificial ethology (1. publ.). Oxford: Oxford Univ. Press. http://www.worldcat.org/title/artificial-ethology/oclc/231909303. Accessed 23 April 2013.
  37. Humphreys, P. (2004). Extending ourselves computational science, empiricism, and scientific method. New York: Oxford University Press. http://ucla.worldcat.org/title/extending-ourselves-computational-science-empiricism-and-scientific-method/oclc/66463129&referer=brief_results. Accessed 6 May 2013.
  38. Humphreys, P. (2008). Computational and conceptual emergence. Philosophy of Science, 75(5), 584–594.  https://doi.org/10.1086/596776.CrossRefGoogle Scholar
  39. Huneman, P. (2014). Mapping an expanding territory: Computer simulations in evolutionary biology. History and Philosophy of the Life Sciences, 36(1), 60–89.  https://doi.org/10.1007/s40656-014-0005-2.CrossRefGoogle Scholar
  40. Ieropoulos, I. (2003). Imitating metabolism: Energy autonomy in biologically inspired robots. In Proceedings of the AISB’03, Second international symposium on imitation in animals and artifacts (pp. 191–194). Aberystwyth, Wales.Google Scholar
  41. Ieropoulos, I., Greenman, J., Melhuish, C., & Horsfield, I. (2010). EcoBot-III: A robot with guts. In Proceedings of the Alife XII Conference (pp. 733–740). Odense, Denmark.Google Scholar
  42. Keller, E. F. (2003). Models, simulation, and “computer experiments.” In H. Radder (Ed.), The philosophy of scientific experimentation. Pittsburgh: University of Pittsburgh Press. http://ucla.worldcat.org/title/philosophy-of-scientific-experimentation/oclc/50606388&referer=brief_results. Accessed 6 May 2013.
  43. Keller, E. F. (2007). Booting Up Baby. In J. Riskin (Ed.), Genesis redux: Essays in the history and philosophy of artificial life (pp. 334–346). Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  44. Kelty, C., & Landecker, H. (2004). A theory of animation: Cells, L-systems, and film. Grey Room, 17, 30–63.  https://doi.org/10.1162/1526381042464536.CrossRefGoogle Scholar
  45. Kline, R. R. (2015). The cybernetics moment, or, why we call our age the information age. Baltimore: Johns Hopkins University Press.Google Scholar
  46. Krause, J., Winfield, A. F. T., & Deneubourg, J.-L. (2011). Interactive robots in experimental biology. Trends in Ecology & Evolution, 26(7), 369–375.  https://doi.org/10.1016/j.tree.2011.03.015.CrossRefGoogle Scholar
  47. Kurland, J. A. (1980). Kin selection theory: A review and selective bibliography. Ethology and Sociobiology, 1(4), 255–274.  https://doi.org/10.1016/0162-3095(80)90012-6.CrossRefGoogle Scholar
  48. Landecker, H. (2005). Cellular features: Microcinematography and film theory. Critical Inquiry, 31(4), 903–937.  https://doi.org/10.1086/444519.CrossRefGoogle Scholar
  49. Landecker, H. (2009). Seeing things: From microcinematography to live cell imaging. Nature Methods, 6(10), 707–709.  https://doi.org/10.1038/nmeth1009-707.CrossRefGoogle Scholar
  50. Landecker, H. (2011). Food as exposure: Nutritional epigenetics and the new metabolism. BioSocieties, 6(2), 167–194.  https://doi.org/10.1057/biosoc.2011.1.CrossRefGoogle Scholar
  51. Landecker, H. (2013). When the control becomes the experiment. Limn, 1(3), 6–8.Google Scholar
  52. Leigh, E. G. (2010). The group selection controversy. Journal of Evolutionary Biology, 23(1), 6–19.  https://doi.org/10.1111/j.1420-9101.2009.01876.x.CrossRefGoogle Scholar
  53. Lenhard, J. (2006a). Surprised by a nanowire: Simulation, control, and understanding. Philosophy of Science, 73(5), 605–616.  https://doi.org/10.1086/518330.CrossRefGoogle Scholar
  54. Lenhard, J. (2006a). Simulation pragmatic construction of reality. Dordrecht: Springer. http://ucla.worldcat.org/title/simulation-pragmatic-construction-of-reality/oclc/209946184&referer=brief_results. Accessed 6 May 2013.
  55. Levitis, D. A., Lidicker, W. Z., & Freund, G. (2009). Behavioural biologists don’t agree on what constitutes behaviour. Animal Behaviour, 78(1), 103–110.  https://doi.org/10.1016/j.anbehav.2009.03.018.CrossRefGoogle Scholar
  56. Lowe, R., Montebelli, A., Ieropoulos, I., Greenman, J., Melhuish, C., & Ziemke, T. (2010). Grounding motivation in energy autonomy: A study of artificial metabolism constrained robot dynamics. In Proceedings of the Alife XII Conference (pp. 725–732). Odense, Denmark.Google Scholar
  57. Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Developmental robotics: A survey. Connection Science, 15(4), 151–190.  https://doi.org/10.1080/09540090310001655110.CrossRefGoogle Scholar
  58. Mehmet Sarikaya, I. A. A. (1995). Biomimetics: Design and processing of materials. American Institute of Physics. http://books.google.com/books?id=BFcbAQAAIAAJ&pgis=1. Accessed 23 April 2013.
  59. Mitri, S., Floreano, D., & Keller, L. (2009). The evolution of information suppression in communicating robots with conflicting interests. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15786–15790.  https://doi.org/10.1073/pnas.0903152106.CrossRefGoogle Scholar
  60. Mitri, S., Floreano, D., & Keller, L. (2011). Relatedness influences signal reliability in evolving robots. Proceedings. Biological sciences/The Royal Society, 278(1704), 378–383.  https://doi.org/10.1098/rspb.2010.1407.CrossRefGoogle Scholar
  61. Mitri, S., Wischmann, S., Floreano, D., & Keller, L. (2013). Using robots to understand social behaviour. Biological Reviews of the Cambridge Philosophical Society, 88(1), 31–39.  https://doi.org/10.1111/j.1469-185X.2012.00236.x.CrossRefGoogle Scholar
  62. Morgan, M. S., & Morrison, M. (1999). Models as mediators: Perspectives on natural and social science. Cambridge: Cambridge University Press. http://www.amazon.com/dp/0521655714.
  63. Nelson, R. R., & Winter, S. G. (1982). An evolutionary theory of economic change. Cambridge: Harvard University Press. http://books.google.com/books?id=6Kx7s_HXxrkC&pgis=1. Accessed 28 April 2011.
  64. Nowak, M. A., Tarnita, C. E., & Wilson, E. O. (2010). The evolution of eusociality. Nature, 466(7310), 1057–1062.  https://doi.org/10.1038/nature09205.CrossRefGoogle Scholar
  65. Okasha, S. (2001). Why won’t the group selection controversy go away? The British Journal for the Philosophy of Science, 52(1), 25–50.  https://doi.org/10.1093/bjps/52.1.25.CrossRefGoogle Scholar
  66. Parker, W. (2009). Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169(3), 483–496.  https://doi.org/10.1007/s11229-008-9434-3.CrossRefGoogle Scholar
  67. Pfeifer, R., & Bongard, J. (2007). How the body shapes the way we think: A new view of intelligence. Cambridge MA: MIT Press.Google Scholar
  68. Pickering, A. (2010). The cybernetic brain: Sketches of another future. Chicago: University of Chicago Press. https://books.google.com/books?id=1pxUngEACAAJ&dq=pickering+cybernetics&hl=en&sa=X&ved=0ahUKEwiDpYne_q7UAhVU5GMKHd3XAQQQ6AEILTAB. Accessed 8 June 2017.
  69. Piliavin, J. A., & Charng, H.-W. (1990). Altruism: A review of recent theory and research. Annual Review of Sociology, 16, 27–65.  https://doi.org/10.2307/2083262.CrossRefGoogle Scholar
  70. Rheinberger, H.-J. (1997). Toward a history of epistemic things: Synthesizing proteins in the test tube (1st ed.). Palo Alto: Stanford University Press. http://www.amazon.com/dp/0804727864.
  71. Riskin, J. (2007). Genesis redux: Essays in the history and philosophy of artificial life. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  72. Rohrlich, F. (1990). Computer simulation in the physical sciences. In PSA: Proceedings of the biennial meeting of the philosophy of science association, 1990 (pp. 507–518).  https://doi.org/10.2307/193094.
  73. Sapp, J. (2009). The new foundations of evolution: On the tree of life. Oxford: Oxford University Press. http://books.google.com/books?id=JuNK5bTXexcC&pgis=1. Accessed 12 January 2011.
  74. Schank, J. C. (2004). A biorobotic investigation of Norway rat pups (Rattus norvegicus) in an arena. Adaptive Behavior, 12(3–4), 161–173.  https://doi.org/10.1177/105971230401200303.CrossRefGoogle Scholar
  75. Schweber, S., & Wächter, M. (2000). Complex systems, modelling and simulation. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 31(4), 583–609.  https://doi.org/10.1016/S1355-2198(00)00030-7.CrossRefGoogle Scholar
  76. Smith, D. W. (2006). The concept of the simulacrum: Deleuze and the overturning of Platonism. Continental Philosophy Review, 38(1–2), 89–123.  https://doi.org/10.1007/s11007-006-3305-8.CrossRefGoogle Scholar
  77. Smolin, L. (1997). The life of the cosmos. New York: Oxford University Press. http://ucla.worldcat.org/title/life-of-the-cosmos/oclc/35033598&referer=brief_results. Accessed 23 April 2013.
  78. Steinle, F. (1997). Entering new fields: Exploratory uses of experimentation. Philosophy of Science, 64, S65–S74.  https://doi.org/10.2307/188390.CrossRefGoogle Scholar
  79. Suchman, L. (2011). Subject objects. Feminist Theory, 12(2), 119–145.  https://doi.org/10.1177/1464700111404205.CrossRefGoogle Scholar
  80. Tinbergen, N. (1951). The study of instinct. Oxford: Clarendon Press. http://ucla.worldcat.org/title/study-of-instinct/oclc/766056&referer=brief_results. Accessed 29 April 2013.
  81. Toulmin, S. (1972). Human understanding: Vol. 1-. Oxford. http://www.worldcat.org/title/human-understanding-vol-1/oclc/469358599. Accessed 23 April 2013.
  82. Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind. Revue Internationale de Philosophie.  https://doi.org/10.1111/j.1468-0149.1965.tb01386.x.Google Scholar
  83. Waibel, M., Floreano, D., & Keller, L. (2011). A quantitative test of Hamilton’s rule for the evolution of altruism. PLoS Biology, 9(5), e1000615.  https://doi.org/10.1371/journal.pbio.1000615.CrossRefGoogle Scholar
  84. Wilson, E. (2010). Affect and artificial intelligence. Seattle: University of Washington Press. http://ucla.worldcat.org/title/affect-and-artificial-intelligence/oclc/557402981&referer=brief_results. Accessed 6 May 2013.
  85. Wimsatt, W. C., & Griesemer, J. R. (2007). Reproducing entrenchments to scaffold culture: The central role of development in cultural evolution. In R. Sansom & R. N. Brandon (Eds.), Integrating evolution and development: From theory to practice (pp. 227–323). Cambridge, MA: MIT Press.Google Scholar
  86. Winograd, T. (1995). Heidegger and the design of computer systems. In A. Feenberg (Ed.), Technology and the politics of knowledge (pp. 108–127). Bloomington: Indiana Univ. Press. http://www.worldcat.org/title/technology-and-the-politics-of-knowledge/oclc/260169089. Accessed 29 April 2013.
  87. Winsberg, E. (2008). A tale of two methods. Synthese, 169(3), 575–592.  https://doi.org/10.1007/s11229-008-9437-0.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.The UCLA Institute for Society and GeneticsLos AngelesUSA

Personalised recommendations