Petri dish versus Winogradsky column: a longue durée perspective on purity and diversity in microbiology, 1880s–1980s

Original Paper
Part of the following topical collections:
  1. New Perspectives in the History of Twentieth-Century Life Sciences

Abstract

Microbial diversity has become a leitmotiv of contemporary microbiology, as epitomized in the concept of the microbiome, with significant consequences for the classification of microbes. In this paper, I contrast microbiology’s current diversity ideal with its influential predecessor in the twentieth century, that of purity, as epitomized in Robert Koch’s bacteriological culture methods. Purity and diversity, the two polar opposites with regard to making sense of the microbial world, have been operationalized in microbiological practice by tools such as the “clean” Petri dish versus the “dirty” Winogradsky column, the latter a container that mimics, in the laboratory, the natural environment that teems with diverse microbial life. By tracing the impact of the practices and concepts of purity and diversity on microbial classification through a history of techniques, tools, and manuals, I show the shifts in these concepts over the last century. Juxtaposing the dominant purity ideal with the more restricted, but continuously articulated, diversity ideal in microbial ecology not only provides a fresh perspective on microbial classification that goes beyond its intellectual history, but also contextualizes the present focus on diversity. By covering the period of a century, this paper outlines a revised longue durée historiography that takes its inspiration from artifacts, such as Petri dish and the Winogradsky column, and thereby simple, but influential technologies that often remain invisible. This enables the problem of historical continuity in modern science to be addressed and the accelerationist narratives of its development to be countered.

Keywords

Microbiology Pure culture Purity Classification Microbial ecology Petri dish Winogradsky column 

Notes

Acknowledgement

I would like to thank the editors of this special issue, Robert Meunier and Kärin Nickelsen, as well as two reviewers for their comments and suggestions. I am also grateful to The American Society of Microbiology Archives, and especially Jeff Karr, for help and access to materials, and the permission to reproduce a figure from society publications. Warwick Anderson provided an inspiring comment at a moment when my only task was to shorten the manuscript, and which thus has to be spelled out elsewhere.

References

  1. Ackert, L. (2012). Sergei Vinogradskii and the cycle of life: From the thermodynamics of life to ecological microbiology, 1850–1950. Dordrecht: Springer Netherlands.Google Scholar
  2. Anderson, W. (2004). Natural histories of infectious disease: Ecological vision in twentieth-century biomedical science. Osiris, 19, 39–61.CrossRefGoogle Scholar
  3. Anonymous, (1931). Thirty-second annual meeting of the society of American bacteriologists. Journal of Bacteriology, 21(1), 1–60.Google Scholar
  4. Bergey, D. H. (1923). Bergey’s manual of determinative bacteriology (1st ed.). Baltimore: Williams & Wilkins.Google Scholar
  5. Bonneuil, C. (2016). Pure lines as industrial simulacra: A cultural history of genetics from Darwin to Johannsen. In S. Müller-Wille & Ch. Brandt (Eds.), Heredity explored. Between public domain and experimental science (pp. 213–242). Cambridge: MIT Press.Google Scholar
  6. Braudel, F. (1958). Histoire et Sciences sociales: La longue durée. Annales Histoire, Sciences Sociales, 13(4), 725–753.CrossRefGoogle Scholar
  7. Braudel, F. (1966). La Méditerranée et le monde méditerranéen à l’époque de Philippe II. Paris: Armand Colin.Google Scholar
  8. Breed, R. S., & Breed, M. E. (1924). The type species of the genus Serratia, commonly known as Bacillus prodigiosus. Journal of Bacteriology, 9, 545–557.Google Scholar
  9. Brock, T. D. (1966). Principles of microbial ecology. Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  10. Brock, T. D. (1970). Biology of microorganisms. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  11. Buchanan, R. E., St John-Brooks, R., & Breed, R. S. (1948). International bacteriological code of nomenclature. Journal of Bacteriology, 55(3), 287–306.Google Scholar
  12. Bulloch, W. (1938). The history of bacteriology. London: Oxford University Press.Google Scholar
  13. Ceccatti, J. S. (2001). Science in the brewery: Pure yeast culture and the transformation of brewing practices in Germany at the end of the 19th century. Ph.D. Dissertation, The University of Chicago.Google Scholar
  14. Collard, P. J., & Collard, P. (1976). The development of microbiology. Cambridge: Cambridge University Press.Google Scholar
  15. Committee on Bacteriological Technic (Ed.). (1923). Manual of methods for pure culture study of bacteria (1st ed.). Geneva, NY: The Society of American Bacteriologists.Google Scholar
  16. Committee on Bacteriological Technic (Ed.). (1946). Manual of methods for pure culture study of bacteria (9th ed.). Geneva, N.Y.: Biotech Publications.Google Scholar
  17. Committee on Bacteriological Technic (Ed.). (1952). Manual of methods for pure culture study of bacteria (10th ed.). Geneva, NY: Biotech Publications.Google Scholar
  18. Committee on Bacteriological Technic (Ed.). (1957). Manual of microbiological methods. New York: McGraw-Hill.Google Scholar
  19. Conn, H. J. (1927). An elementary laboratory guide in general bacteriology. Baltimore: Williams & Wilkins.Google Scholar
  20. Corner, T. R. (1992). Ecology in a jar. Science Teacher, 59(3), 32–36.Google Scholar
  21. Cowan, S. T., & Hill, L. R. (1978). A dictionary of microbial taxonomy. Cambridge: Cambridge University Press.Google Scholar
  22. Daston, L. (2004). Type specimens and scientific memory. Critical Inquiry, 31(1), 153–182.CrossRefGoogle Scholar
  23. de Chadarevian, S. (2009). Microstudies versus big picture accounts? Studies in History and Philosophy of Biological and Biomedical Sciences, 40(1), 13–19.CrossRefGoogle Scholar
  24. Doolittle, W. F. (2013). Microbial neopleomorphism. Biology and Philosophy, 28(2), 351–378.CrossRefGoogle Scholar
  25. Douglas, M. (1985 [1966]). Reinheit und Gefährdung: eine Studie zu Vorstellungen von Verunreinigung und Tabu. Berlin: Reimer.Google Scholar
  26. Edgerton, D. H. E. (2008). The shock of the old. Technology and global history since 1900. London: Profile.Google Scholar
  27. Epstein, S. S. (2013). The phenomenon of microbial uncultivability. Current Opinion in Microbiology, 16(5), 636–642.CrossRefGoogle Scholar
  28. Espahangizi, K. (2015). From Topos to Oikos: The standardization of glass containers as epistemic boundaries in modern laboratory research (1850–1900). Science in Context, 28(3), 397–425.CrossRefGoogle Scholar
  29. Fleck, L. (1980 [1935]), Entstehung und Entwicklung einer wissenschaftlichen Tatsache. Einführung in die Lehre vom Denkstil und Denkkollektiv. Frankfurt: Suhrkamp.Google Scholar
  30. Fleck, L. (2011). Denkstile und Tatsachen: Gesammelte Schriften und Zeugnisse. Herausgegeben von Sylwia Werner und Claus Zittel. Berlin: Suhrkamp.Google Scholar
  31. Fuhrmann, F. (1910). Die wichtigsten Methoden beim Arbeiten mit Pilzen und Bakterien. In E. Abderhalden (Ed.), Handbuch der biochemischen Arbeitsmethoden, Vol. 3. Part 2 (pp. 1204–1336). Berlin: Urban & Schwarzenberg.Google Scholar
  32. Garrity, G., Brenner, D. J., Krieg, N. R., & Staley, J. R. (Eds.). (2007). Bergey’s Manual ® of systematic bacteriology: Volume 2: The proteobacteria, Part B: The gammaproteobacteria. New York: Springer.Google Scholar
  33. Gerhardt, P., & American Society for Microbiology. (1981). Manual of Methods for General Bacteriology. Washington, D.C.: American Society for Microbiology.Google Scholar
  34. Gossel, P. P. (1989). The emergence of American bacteriology, 18751900. Ph.D. Dissertation, Johns Hopkins University.Google Scholar
  35. Gradmann, Ch. (2001). Isolation, contamination, and pure culture: Monomorphism and polymorphism of pathogenic micro-organisms as research problem 1860–1880. Perspectives on Science, 9(2), 147–172.CrossRefGoogle Scholar
  36. Gradmann, Ch. (2005). Krankheit im Labor: Robert Koch und die medizinische Bakteriologie. Göttingen: Wallstein.Google Scholar
  37. Gradmann, Ch. (2014). A spirit of scientific rigour: Koch’s postulates in twentieth-century medicine. Microbes and Infection, 16(11), 885–892.CrossRefGoogle Scholar
  38. Grote, M. (2015). What could the “Longue Durée” mean for the history of modern sciences? Working Paper Fédération Maison des Sciences de l’Homme. FMSH-WP-2015-98. 2015, < halshs-01171257>. https://halshs.archives-ouvertes.fr/halshs-01171257.
  39. Grote, M. (2016). Das Patchwork der Mikroben. Bio-Technologien jenseits der großen Erzählungen. In M. Pratschke, M. Stadler & N. Güttler (Eds.), Wissen, ca. 1980. Nach Feierabend. Zürcher Jahrbuch für Wissensgeschichte 16, 35–51.Google Scholar
  40. Grote, M. (forthcoming). Petri dish. In: S. Bauer, M. Schlünder & M. Rentetzi (Eds.), Boxes in action. Manchester: Mattering Press.Google Scholar
  41. Hauduroy, P. (1947). Microbiologie générale et technique microbiologique. Paris: Masson.Google Scholar
  42. Holmes, F. L. (2003). The Longue Durée in the history of science. History and Philosophy of the Life Sciences, 25(4), 463–470.CrossRefGoogle Scholar
  43. Hueppe, F. (1889). Die Methoden der Bakterienforschung. Wiesbaden: C.W. Kreidel.Google Scholar
  44. Jackson, C. M. (2015). The “Wonderful Properties of Glass”: Liebig’s Kaliapparat and the Practice of Chemistry in Glass. Isis, 106(1), 43–69.CrossRefGoogle Scholar
  45. Kisskalt, K., & Hartmann, M. (1907). Praktikum der Bakteriologie und Protozoologie. Jena: G. Fischer.Google Scholar
  46. Koch, R. (1881). Zur Untersuchung von pathogenen Organismen. In J. Schwalbe (Ed.), Gesammelte Werke von Robert Koch (pp. 112–163). Leipzig: Thieme.Google Scholar
  47. Kostka, G. (1924). Praktische Anleitung zur Kultur der Mikroorganismen. Stuttgart: Franckh’sche Verlagshandlung.Google Scholar
  48. Kreuder-Sonnen, K. (2012). Wie die Mikroben nach Warschau kamen. NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, 20(3), 157–180.CrossRefGoogle Scholar
  49. Kupferberg, E. D. (2001). The expertise of germs: Practice, language and authority in American bacteriology, 18991924. Ph.D. Dissertation, Massachusetts Institute of Technology, Program in Science, Technology and Society.Google Scholar
  50. Lafar, Th. (1907). Handbuch der technischen Mykologie Allgemeine Morphologie und Physiologie der Gärungsorganismen (Vol. 1). Jena: Gustav Fischer.Google Scholar
  51. Lan, R., & Reeves, P. R. (2002). Escherichia coli in disguise: Molecular origins of Shigella. Microbes and Infection, 4(11), 1125–1132.CrossRefGoogle Scholar
  52. Lapage, S. P., Sneath, P. H. A., Lessel, E. F., et al. (Ed). (1992) International code of nomenclature of bacteria: Bacteriological code, 1990 Revision. Washington (D.C.): ASM Press. http://www.ncbi.nlm.nih.gov/books/NBK8808/. Last access August 2nd, 2016.
  53. Lautenschläger, F. M. (Ed.). (1915). Komplette Einrichtung von bakteriologischen, serologischen und chemischen Laboratorien und Untersuchungsanstalten, Operationssälen, Krankenhäusern, Sektionssälen usw. F. & M. Berlin: Lautenschläger.Google Scholar
  54. Lee, V. (2015). Mold cultures: Traditional industry and microbial studies in early twentieth-century Japan. In D. Phillips & S. Kingsland (Eds.), New perspectives on the history of life sciences and agriculture (pp. 231–252). Cham: Springer.Google Scholar
  55. Lehmann, K. B., & Neumann, R. O. (1907). Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik. Teil I: Atlas. München: J. F. Lehmanns Verlag.Google Scholar
  56. Lillie, R. D. (1977). Harold Joel Conn: 1886–1975. Stain Technology, 52(1), 3–4.CrossRefGoogle Scholar
  57. Löffler, F. (1983 [1887]). Vorlesungen über die geschichtliche Entwicklung der Lehre von den Bakterien. Leipzig: Zentralantiquariat der DDR.Google Scholar
  58. Madigan, M. T., & Martinko, J. M. (Eds.). (2006). Brock biology of microorganisms (11th ed.). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  59. Mazumdar, P. M. H. (2002). Species and specificity: An interpretation of the history of immunology. Cambridge: Cambridge University Press.Google Scholar
  60. Mendelsohn, J. A. (2002). ‘Like All That Lives’: Biology, medicine and bacteria in the Age of Pasteur and Koch. History and Philosophy of the Life Sciences, 24(1), 3–36.CrossRefGoogle Scholar
  61. Méthot, P.-O. (2015). Bacterial transformation and the origins of epidemics in the interwar period: The epidemiological significance of Fred Griffith’s “Transforming Experiment”. Journal of the History of Biology, 49(2), 311–358.CrossRefGoogle Scholar
  62. Müller-Wille, S. (2007). Hybrids, pure cultures, and pure lines: From nineteenth-century biology to twentieth-century genetics. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 38(4), 796–806.CrossRefGoogle Scholar
  63. Müller-Wille, S. (forthcoming). Names and Numbers: “Data” in Classical Natural History, 1758–1859. In: E. Aronova, Ch. von Oertzen, D. Sepkoski (Eds.), Data Histories. Osiris, Vol. 32. Chicago: University of Chicago Press.Google Scholar
  64. Murray, R. G. E., & Holt, J. G. (2001). The History of Bergey’s Manual. In D. R. Boone, R. W. Castenholz, & G. M. Garrity (Eds.), Bergey’s Manual ® of systematic bacteriology: Volume one: The archaea and the deeply branching and phototrophic bacteria (pp. 1–13). New York: Springer.Google Scholar
  65. O’Malley, M. A. (2014). Philosophy of microbiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  66. O’Malley, M. A., & Dupré, J. (2007). Size doesn’t matter: Towards a more inclusive philosophy of biology. Biology and Philosophy, 22(2), 155–191.CrossRefGoogle Scholar
  67. Paxson, H., & Helmreich, S. (2014). The perils and promises of microbial abundance: Novel natures and model ecosystems, from artisanal cheese to alien seas. Social Studies of Science, 44(2), 165–193.CrossRefGoogle Scholar
  68. Perkins, W. (1928). Classification of bacteria. In E. O. Jordan & I. S. Falk (Eds.), The newer knowledge of bacteriology and immunology (pp. 120–135). Chicago: The University of Chicago Press.Google Scholar
  69. Reiß, C. (2012). Gateway, instrument, environment. The aquarium as a hybrid space between animal fancying and experimental zoology. NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, 20(4), 309–336.CrossRefGoogle Scholar
  70. Richter, O. (1907). Die Bedeutung der Reinkultur: eine Literaturstudie. Berlin: Gebrüder Borntraeger.Google Scholar
  71. Rosa, H. (2013). Social acceleration: A new theory of modernity. New York: Columbia University Press.CrossRefGoogle Scholar
  72. Sapp, J. (2009). The new foundations of evolution: On the tree of life. Oxford: Oxford University Press.Google Scholar
  73. Schlegel, H. G. (1965). Anreicherungskultur und Mutantenauslese: Symposium in Göttingen vom 28. bis 30.4.1964. Stuttgart: Fischer.Google Scholar
  74. Schlegel, H. G. (1976). Allgemeine Mikrobiologie (4th ed.). Stuttgart: Thieme.Google Scholar
  75. Schlegel, H. G. (2004). Geschichte der Mikrobiologie. Acta Historica Leopoldina 28 (2nd ed.). Stuttgart: Wissenschaftliche Verlagsgesellschaft.Google Scholar
  76. Schröder, H. (1975). Mikrobiologisches Praktikum. Berlin: Volk und Wissen.Google Scholar
  77. Spath, S. B. (1999). Cornelis Bernardus Van Niel and the Culture of Microbiology, 1920–1965. Ph.D. dissertation, University of California at Berkeley.Google Scholar
  78. Staley, J. T., & Konopka, A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annual Review of Microbiology, 39(1), 321–346.CrossRefGoogle Scholar
  79. Starr, M. P., et al. (Eds.). (1981). The prokaryotes: A handbook on habitats, isolation, and identification of bacteria. Berlin: Springer.Google Scholar
  80. Stockhausen, F. (1907). Ökologie, “Anhäufungen” nach Beijerinck: Beiträge zur natürlichen Reinzucht der Mikroorganismen. Berlin: Institut für Gärungsgewerbe.Google Scholar
  81. Teich, M. (1983). Fermentation theory and practice: The beginnings of pure yeast cultivation and English Brewing, 1883–1913. History of Technology, 8, 117–133.Google Scholar
  82. Veldkamp, H. (1970). Enrichment cultures of prokaryotic organisms. In: J. R. Norris, & D. W. Ribbons (ed.), Methods in microbiology, Vol. 3A, New York: Academic Press, Ch. V, pp. 305–362.Google Scholar
  83. Winogradsky, S. (1888). Beiträge zur Morphologie und Physiologie der Bakterien. Heft 1: Zur Morphologie und Physiologie der Schwefelbacterien. Leipzig: Arthur Felix.Google Scholar
  84. Winogradsky, S. (1949). Microbiologie du sol: problèmes et méthodes. Paris: Masson.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut für GeschichtswissenschaftenHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations