Advertisement

Developmental push or environmental pull? The causes of macroevolutionary dynamics

  • Douglas H. ErwinEmail author
Original Paper
Part of the following topical collections:
  1. Causality, genomic regulation, and evolution in the post-genomic era: a tribute to Eric Davidson

Abstract

Have the large-scale evolutionary patterns illustrated by the fossil record been driven by fluctuations in environmental opportunity, by biotic factors, or by changes in the types of phenotypic variants available for evolutionary change? Since the Modern Synthesis most evolutionary biologists have maintained that microevolutionary processes carrying on over sufficient time will generate macroevolutionary patterns, with no need for other pattern-generating mechanisms such as punctuated equilibrium or species selection. This view was challenged by paleontologists in the 1970s with proposals that the differential sorting and selection of species and clades, and the effects of biotic crises such as mass extinctions, were important extensions to traditional evolutionary theory. More recently those interested in macroevolution have debated the relative importance of abiotic and biotic factors in driving macroevolutionary patterns and have introduced comparative phylogenetic methods to analyze the rates of change in taxonomic diversity. Applying Peter Godfrey-Smith’s distinction between distributional explanations and explanations focusing on the origin of variation, most macroevolutionary studies have provided distributional explanations of macroevolutionary patterns. Comparative studies of developmental evolution, however, have implicated the origin of variants as a driving macroevolution force. In particular, the repatterning of gene regulatory networks provides new insights into the origins of developmental novelties. This raises the question of whether macroevolution has been pulled by the generation of environmental opportunity, or pushed by the introduction of new morphologies. The contrast between distributional and origination scenarios has implications for understanding evolutionary novelty and innovation and how macroevolutionary process may have evolved over time.

Keywords

Macroevolution Novelty Gene regulatory networks Innovation Disparity Evo-devo 

Notes

Acknowledgements

An earlier version of this paper was presented at a workshop on “From Genome to Gene: Causality, Synthesis and Evolution” at the Jacques Loeb Centre for the History and Philosophy of the Life Sciences at Ben Gurion University of the Negev in November 2015. I appreciate the invitation to contribute this paper from Ute Deichmann and Michel Morange. I acknowledge support of this research from the NASA National Astrobiology Institute (Grant # NNA13AA90A).

References

  1. Alberch, P. (1982). Developmental constraints in evolutionary process. In J. T. Bonner (Ed.), Evolution and development (pp. 312–332). Berlin: Springer.Google Scholar
  2. Alroy, J. (2010). Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology, 53, 1211–1235.CrossRefGoogle Scholar
  3. Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fursich, F. T., Harries, P. J., et al. (2008). Phanerozoic trends in the global diversity of marine invertebrates. Science, 321, 97–100.CrossRefGoogle Scholar
  4. Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fursich, F. T., et al. (2001). Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences, 96, 6261–6266.CrossRefGoogle Scholar
  5. Alvarez, L. W., Alvarez, W., Asaro, F., & Michel, H. V. (1980). Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 1095–1108.CrossRefGoogle Scholar
  6. Amundson, R. (2005). The changing role of the embryo in evolutionary thought. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Bambach, R. K. (2006). Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Science, 34, 127–155.CrossRefGoogle Scholar
  8. Bateman, R. M., & DiMichele, W. A. (1994). Saltational evolution of form in vascular plants: A neoGoldschmidtian synthesis. Shape and form in plants and fungi (pp. 61–100). London: Linnean Society.Google Scholar
  9. Bennett, K. D. (1990). Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology, 16, 11–21.CrossRefGoogle Scholar
  10. Benton, M. J. (2009). The red queen and the court jester: Species diversity and the role of biotic and abiotic factors through time. Science, 323, 728–732.CrossRefGoogle Scholar
  11. Bock, W. J. (1979). The Synthetic explanation of macroevolutionary change—A reductionist approach. Bulletin of the Carnegie Museum of Natural History, 13, 20–69.Google Scholar
  12. Bonner, J. T. (1982). Evolution and development. Berlin: Springer.CrossRefGoogle Scholar
  13. Bowler, P. J. (1992). The eclipse of Darwinism. Baltimore: Johns Hopkins Press.Google Scholar
  14. Brakefield, P. M. (2011). Evo-devo and accounting for Darwin’s endless forms. Philosophical Transactions of the Royal Society of London B, 366(1574), 2069–2075. doi: 10.1098/rstb.2011.0007.CrossRefGoogle Scholar
  15. Brigandt, I., & Love, A. C. (2012). Conceptualizing evolutionary novelty: Moving beyond definitional debates. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution, 318B, 417–427.CrossRefGoogle Scholar
  16. Britten, R. J., & Davidson, E. H. (1971). Repetitive and non-repetitive DNA sequences and speculation on the origins of evolutionary novelty. Quarterly Review of Biology, 46, 111–138.CrossRefGoogle Scholar
  17. Brusatte, S. L., Nesbitt, S. J., Irmis, R. B., Butler, R. J., Benton, M. J., & Norell, M. A. (2010). The origin and early radiation of dinosaurs. Earth-Science Reviews, 101, 68–100.CrossRefGoogle Scholar
  18. Calcott, B., & Sterelny, K. (Eds.). (2011). The major transitions in evolution revisited. Cambridge, MA: MIT Press.Google Scholar
  19. Carroll, S. B. (2005). Evolution at two levels: On genes and form. PLoS Biology, 3(7), 1159–1166.CrossRefGoogle Scholar
  20. Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134, 25–36.CrossRefGoogle Scholar
  21. Carroll, S. B., Grenier, J., & Weatherbee, S. (2001). From DNA to diversity. Malden: Blackwell Scientific.Google Scholar
  22. Clarke, J. T., Lloyd, G. T., & Friedman, M. (2016). Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proceedings of the National Academy of Sciences USA, 113, 11531–11536. doi: 10.1073/pnas.1607237113.CrossRefGoogle Scholar
  23. Cracraft, J. (1985). Species selection, macroevolutionary analysis, and the “hierarchical theory”. Systematic Zoology, 34, 222–229.CrossRefGoogle Scholar
  24. Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.Google Scholar
  25. Davidson, E. H. (2006). The regulatory genome. San Diego: Academic Press.Google Scholar
  26. Davidson, E. H., & Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science, 311, 796–800.CrossRefGoogle Scholar
  27. Dobzhansky, T. (1937). Genetics and the origin of species. New York: Columbia University Press.Google Scholar
  28. Eldredge, N. (1979). Alternative approaches to evolutionary theory. Bulletin of the Carnegie Museum of Natural History, 13, 7–19.Google Scholar
  29. Eldredge, N. (1985). Unfinished synthesis: Biological hierarchies and modern evolutionary thought. New York: Oxford Univ. Press.Google Scholar
  30. Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process: Method and theory in comparative biology. New York: Columbia University Press.Google Scholar
  31. Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: Freeman & Co.Google Scholar
  32. Erwin, D. H. (2007). Disparity: Morphological pattern and developmental context. Palaeontology, 50, 57–73.CrossRefGoogle Scholar
  33. Erwin, D. H. (2008a). Extinction as the loss of evolutionary history. Proceedings of the National Academy of Sciences USA, 105, 11520–11527.CrossRefGoogle Scholar
  34. Erwin, D. H. (2008b). Macroevolution of ecosystem engineering, niche construction and diversity. Trends in Ecology & Evolution, 23, 304–310.CrossRefGoogle Scholar
  35. Erwin, D. H. (2011). Evolutionary uniformitarianism. Developmental Biology, 357, 27–34.CrossRefGoogle Scholar
  36. Erwin, D. H. (2015). Novelty and innovation in the history of life. Current Biology, 25(19), R930–R940. doi: 10.1016/j.cub.2015.08.019.CrossRefGoogle Scholar
  37. Erwin, D. H., & Davidson, E. H. (2009). The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics, 10, 141–148. doi: 10.1038/nrg2499.CrossRefGoogle Scholar
  38. Erwin, D. H., & Valentine, J. W. (2013). The Cambrian explosion: The construction of animal biodiversity. Greenwood, CO: Roberts & Co.Google Scholar
  39. Filipchenko, J. P. (1927). Variabilitat und variation. Berlin: Gebruder Bortraeger.Google Scholar
  40. Foote, M. (1997). Evolution of morphological diversity. Annual Review of Ecology and Systematics, 28, 129–152.CrossRefGoogle Scholar
  41. Friedman, M., & Sallan, L. C. (2012). Five hundred million years of extinction and recovery: A Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology, 55, 707–742.CrossRefGoogle Scholar
  42. Futuyma, D. (2015). Can modern evolutionary theory explain macroevolution? In E. Serreli & N. Grontier (Eds.), Macroevolution. Interdisciplinary evolution research (Vol. 2, pp. 29–85). Cham: Springer.Google Scholar
  43. Godfrey-Smith, P. (2014). Philosophy of biology. Princeton, NJ: Princeton University Press.Google Scholar
  44. Goldschmidt, R. (1940). The material basis of evolution. New Haven: Yale UniversityPress.Google Scholar
  45. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Belknap Press.Google Scholar
  46. Gould, S. J. (1980a). Is a new and general theory of evolution emerging? Paleobiology, 6, 119–130.CrossRefGoogle Scholar
  47. Gould, S. J. (1980b). The promise of paleobiology as a nonothetic, evolutionary discipline. Paleobiology, 6, 96–118.CrossRefGoogle Scholar
  48. Gould, S. J. (1982). Change in developmental timing as a mechanism of macroevolution. In J. T. Bonner (Ed.), Evolution and development (pp. 333–346). Berlin: Springer.CrossRefGoogle Scholar
  49. Gould, S. J. (1985). The paradox of the first tier: An agenda for paleobiology. Paleobiology, 11, 2–12.CrossRefGoogle Scholar
  50. Gould, S. J. (1989). Wonderful life. New York: Norton.Google Scholar
  51. Gould, S. J. (2002a). Macroevolution. In M. Pagel (Ed.), Encyclopedia of evolution (Vol. 1, pp. E23–E28). Oxford: Oxford University Press.Google Scholar
  52. Gould, S. J. (2002b). The structure of evolutionary theory. Cambridge: Harvard University Press.Google Scholar
  53. Gould, S. J., & Eldredge, N. (1993). Punctuated equilibrium comes of age. Nature, 366, 223–227.CrossRefGoogle Scholar
  54. Harmon, L. J., Losos, J. B., Jonathan Davies, T., Gillespie, R. G., Gittleman, J. L., Bryan Jennings, W., et al. (2010). Early bursts of body size and shape evolution are rare in comparative data. Evolution, 64(8), 2385–2396. doi: 10.1111/j.1558-5646.2010.01025.x.Google Scholar
  55. Hoekstra, H. E., & Coyne, J. A. (2007). The locus of evolution: Evo-devo and the genetics of adaptation. Evolution, 61, 995–1016.CrossRefGoogle Scholar
  56. Hopkins, M. J., & Lidgard, S. (2012). Evolutionary mode routinely varies among morphological traits within fossil species lineages. Proceedings of the National Academy of Sciences USA, 109, 20520–20525. doi: 10.1073/pnas.1209901109.CrossRefGoogle Scholar
  57. Hughes, M., Gerber, S., & Wills, M. A. (2013). Clades reach highest morphologic disparity early in their evolution. Proceedings of the National Academy of Sciences USA, 110, 13875–13879.CrossRefGoogle Scholar
  58. Hull, D. S. (1980). Individuality and selection. Annual Review of Ecology and Systematics, 11, 311–332.CrossRefGoogle Scholar
  59. Hunt, G. (2007). The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proceedings of the National Academy of Sciences USA, 104, 18404–18408. doi: 10.1073/pnas.0704088104.CrossRefGoogle Scholar
  60. Hunt, G., & Rabosky, D. L. (2014). Phenotypic evolution in fossil species: Pattern and process. Annual Review of Earth and Planetary Sciences, 42, 421–441. doi: 10.1146/annurev-earth-040809-152524.CrossRefGoogle Scholar
  61. Huxley, J. S. (1958). Evolutionary processes and taxonomy with special reference to grades. Uppsala Universiter. Arsskrift, 1958, 21–38.Google Scholar
  62. Jablonski, D. (1986). Background and mass extinction: The alternation of macroevolutionary regimes. Science, 231, 129–133.CrossRefGoogle Scholar
  63. Jablonski, D. (1989). The biology of mass extinction: A paleontological view. Philisophical Transactions of the Royal Society, London B., 325, 357–368.CrossRefGoogle Scholar
  64. Jablonski, D. (2005). Mass extinctions and macroevolution. Paleobiology, 31, 192–210.CrossRefGoogle Scholar
  65. Jablonski, D. (2007). Scale and hierarchy in macroevolution. Palaeontology, 50, 87–109.CrossRefGoogle Scholar
  66. Jablonski, D. (2008). Species selection: Theory and data. Annual Review of Ecology Evolution and Systematics, 39, 501–524.CrossRefGoogle Scholar
  67. Jablonski, D. (2010). Macroevolutionary trends in time and space. In P. R. Grant & B. R. Grant (Eds.), In search of the causes of evolution (pp. 25–43). Princeton, NJ: Princeton University Press.Google Scholar
  68. Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.CrossRefGoogle Scholar
  69. Kirschner, M., & Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences USA, 95, 8420–8427. doi: 10.1073/pnas.95.15.8420.CrossRefGoogle Scholar
  70. Labandeira, C. C., & Sepkoski, J. J., Jr. (1993). Insect diversity in the fossil record. Science, 261, 310–315.CrossRefGoogle Scholar
  71. Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Muller, G. B., Moczek, A., et al. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of the Royal Society of London B, 282, 20151019. doi: 10.1098/rspb.2015.1019.CrossRefGoogle Scholar
  72. Laubichler, M. D., & Maienschein, J. (Eds.). (2009). Form and function in developmental evolution. Cambridge: Cambridge University Press.Google Scholar
  73. Losos, J. B. (2010). Adaptive radiation, ecological opportunity, and evolutionary determinism. American Naturalist, 175, 623–639.CrossRefGoogle Scholar
  74. Losos, J. B. (2011). Convergence, adaptation, and constraint. Evolution, 65, 1827–1840. doi: 10.1111/j.1558-5646.2011.01289.x.CrossRefGoogle Scholar
  75. Losos, J. B. (Ed.). (2014). Princeton guide to evolution. Princeton, NJ: Princeton University Press.Google Scholar
  76. Love, A. C. (2003). Evolutionary morphology, innovation and the synthesis of evolutionary and developmental biology. Biology and Philosophy, 18, 309–345.CrossRefGoogle Scholar
  77. Lowe, C. B., Kellis, M., Siepel, A., Raney, B. J., Clamp, M., Salama, S. R., et al. (2011). Three periods of regulatory innovation during vertebrate evolution. Science, 333, 1019–1024. doi: 10.1126/science.1202702.CrossRefGoogle Scholar
  78. Magallon, S., & Castillo, A. (2009). Angiosperm diversification through time. American Journal of Botany, 96, 349–365. doi: 10.3732/Ajb.0800060.CrossRefGoogle Scholar
  79. Matthews, B., De Meester, L., Jones, C. G., Ibelings, B. W., Bouma, T. J., Nuutinen, V., et al. (2014). Under niche construction: An operational bridge between ecology, evolution, and ecosystem science. Ecological Monographs, 84, 245–263. doi: 10.1890/13-0953.1.CrossRefGoogle Scholar
  80. Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., et al. (1985). Developmental constraints and evolution. Quarterly Review of Biology, 60, 265–287.CrossRefGoogle Scholar
  81. Maynard Smith, J., & Szathmary, E. (1995). The major transitions in evolution. New York: W. H. Freeman.Google Scholar
  82. Mayr, E. (1942). Systematics and the origin of species. New York: Columbia Univ. Press.Google Scholar
  83. Mayr, E. (1960). The emergence of novelty. In S. Tax (Ed.), The evolution of life (pp. 349–380). Chicago: Univ. of Chicago Press.Google Scholar
  84. McShea, D. W. (1998). Possible largest-scale trends in organismal evolution: Eight “live hypotheses”. Annual Review of Ecology and Systematics, 29, 293–318.CrossRefGoogle Scholar
  85. Miller, A. H. (1949). Some ecologic and morphologic considerations in the evolution of higher taxonomic categories. In E. Mayr & E. Schuz (Eds.), Ornithologie als biologische Wissenshaft (pp. 84–88). Heidelberg: Carol Winter.Google Scholar
  86. Moczek, A. P. (2008). On the origins of novelty in development and evolution. BioEssays, 30(5), 432–447.CrossRefGoogle Scholar
  87. Moen, D., & Morlon, H. (2014). Why does diversification slow down? Trends in Ecology & Evolution, 29, 190–197. doi: 10.1016/j.tree.2014.01.010.CrossRefGoogle Scholar
  88. Myers, C. E., & Saupe, E. E. (2013). A macroevolutionary expansion of the modern synthesis and the importance of extrinsic biotic factors. Palaeontology, 56, 1179–1198.CrossRefGoogle Scholar
  89. Nee, S., & May, R. M. (1997). Extinction and the loss of evolutionary history. Science, 278, 692–694.CrossRefGoogle Scholar
  90. Niklas, K. J., Tiffney, B. H., & Knoll, A. H. (1985). Patterns in vascular land plant diversification: An analysis at the species level. In J. W. Valentine (Ed.), Phanerozoic diversity patterns (pp. 97–128). Princeton, NJ: Princeton University Press.Google Scholar
  91. Osborne, H. F. (1922). Orthogenesis as observed from paleontological evidence beginning in the year 1889. American Naturalist, 56, 134–143.CrossRefGoogle Scholar
  92. Pagel, M. (Ed.). (2002). Encyclopedia of evolution. Oxford: Oxford University Press.Google Scholar
  93. Peter, I. S., & Davidson, E. H. (2015). Genomic control processes. Development and evolution. London: Academic Press.Google Scholar
  94. Peters, S. E., & Foote, M. (2001). Biodiversity in the Phanerozoic: A reinterpretation. Paleobiology, 27, 583–601.CrossRefGoogle Scholar
  95. Peterson, T., & Müller, G. B. (2013). What is evolutionary novelty? Process versus character based definitions. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 320(6), 345–350.CrossRefGoogle Scholar
  96. Pigliucci, M. (2009). An extended synthesis for evolutionary biology. Annals of the New York Academy of Sciences, 1168, 218–228.CrossRefGoogle Scholar
  97. Post, D. M., & Palkovacs, E. P. (2009). Eco-evolutionary feedbacks in community and ecosystem ecology: Interactions between the ecological theatre and the evolutionary play. Philosophical Transactions of the Royal Society of London B, 364, 1629–1640. doi: 10.1098/Rstb.2009.0012.CrossRefGoogle Scholar
  98. Rabosky, D. L. (2013). Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annual Review of Ecology Evolution and Systematics, 44, 481–502. doi: 10.1146/Annurev-Ecolsys-110512-135800.CrossRefGoogle Scholar
  99. Reif, W. E., Thomas, R. D. K., & Fischer, M. S. (1985). Constructional morphology: The analysis of constraints in evolution. Acta Biotheoretica, 34, 233–248.CrossRefGoogle Scholar
  100. Rensch, B. (1959 [1954]). Evolution above the species level (2nd Ed.)., translated by R. Altevogt. New York: Columbia University Press.Google Scholar
  101. Ricklefs, R. E. (2004). A comprehensive framework for global patterns. Ecology Letters, 7, 1–15.CrossRefGoogle Scholar
  102. Rudwick, M. J. S. (2008). Worlds before Adam: The reconstruction of geohistory in the age of reform. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  103. Ruse, M., & Travis, J. M. (Eds.). (2009). Evolution. The first four billion years. Cambridge, MA: Harvard University Press.Google Scholar
  104. Ruta, M., Angielczyk, K. D., Frobisch, J., & Benton, M. J. (2013). Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. Proceedings of the Royal Society of London B, 280, 20131071. doi: 10.1098/rspb.2013.1071.CrossRefGoogle Scholar
  105. Schaeffer, B., & Hecht, M. K. (1965). Symposium: The origin of higher levels of organization. Systematic Zoology, 14, 245–342.Google Scholar
  106. Schindewolf, O. (1994 [1950]). Basic questions in paleontology: Geologic time, organic evolution, and biological systematics. Translated by J. Schaefer. Chicago: University of Chicago Press.Google Scholar
  107. Sebe-Pedros, A., Ballare, C., Parra-Acero, H., Chiva, C., Tena, J. J., Sabido, E., et al. (2016). The dynamic regulatory genome of Capsaspora and the origin of animal multicellularity. Cell, 165, 1224–1237. doi: 10.1016/j.cell.2016.03.034.CrossRefGoogle Scholar
  108. Sepkoski, J. J., Jr. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7, 36–53.CrossRefGoogle Scholar
  109. Sepkoski, J. J., Jr. (1984). A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinction. Paleobiology, 10, 246–267.CrossRefGoogle Scholar
  110. Sepkoski, J. J., Jr. (1986). Phanerozoic overview of mass extinction. In D. M. Raup & D. Jablonski (Eds.), Patterns and processes in the history of life (pp. 277–295). Berlin: Springer.CrossRefGoogle Scholar
  111. Sepkoski, J. J., Jr. (1988). Alpha, beta, or gamma: Where does all the diversity go? Paleobiology, 14, 221–234.CrossRefGoogle Scholar
  112. Sepkoski, J. J., Jr. (1993). Ten years in the library: New data confirm paleontological patterns. Paleobiology, 19, 43–51.CrossRefGoogle Scholar
  113. Sepkoski, J. J., Jr. (1997). Biodiversity: Past, present, and future. Journal of Paleontology, 71, 533–539.CrossRefGoogle Scholar
  114. Sepkoski, D. (2012). Rereading the fossil record: The growth of paleobiology as an evolutionary discipline. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  115. Sepkoski, D. (2013). Towards “A Natural History of Data”: Evolving practices and epistomologies of data in paleontology, 1800–2000. Journal of the History of Biology, 46, 401–444.CrossRefGoogle Scholar
  116. Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457, 818–823. doi: 10.1038/nature07891.CrossRefGoogle Scholar
  117. Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbian University Press.Google Scholar
  118. Simpson, G. G. (1959). The nature and origin of supraspecific taxa. Cold Spring Harbor Symposium on Quantitative Biology, 24, 255–271.CrossRefGoogle Scholar
  119. Simpson, G. G. (1960). The history of life. In S. Tax (Ed.), The evolution of life (pp. 117–180). Chicago: University of Chicago Press.Google Scholar
  120. Slater, G. J. (2015). Not-so-early burst and the dynamic nature of morphological diversification. Proceedings of the National Academy of Sciences USA, 112, 3595–3596.CrossRefGoogle Scholar
  121. Smith, A. B., Lloyd, G. T., & McGowan, A. J. (2012). Phanerozoic marine diversity: Rock record modelling provides an independent test of large-scale trends. Proceedings of the Royal Society of London B, 279, 4489–4495. doi: 10.1098/Rspb.2012.1793.CrossRefGoogle Scholar
  122. Stanley, S. M. (1975). A theory of evolution above the species level. Proceedings of the National Academy of Sciences USA, 72, 646–650.CrossRefGoogle Scholar
  123. Stanley, S. M. (1979). Macroevolution. San Francisco: W. H. Freeman.Google Scholar
  124. Strausfeld, N. J., Ma, X., Edgecombe, G. D., Fortey, R. A., Land, M. F., Liu, Y., et al. (2016). Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems. Arthropod Structure and Development, 45(2), 152–172. doi: 10.1016/j.asd.2015.07.005.CrossRefGoogle Scholar
  125. Stroud, L. T., & Losos, J. B. (2016). Ecological opportunity and adaptive radiation. Annual Review of Ecology Evolution and Systematics, 47, 507–532.CrossRefGoogle Scholar
  126. Szathmary, E. (2015). Toward major evolutionary transitions theory 2.0. Proceedings of the National Academy of Sciences USA, 112(33), 10104–10111. doi: 10.1073/pnas.1421398112.CrossRefGoogle Scholar
  127. Theissen, G. (2006). The proper place of hopeful monsters in evolution. Theory in Biosciences, 124, 349–369.CrossRefGoogle Scholar
  128. Valentine, J. W. (1980). Determinants of diversity in higher taxonomic catagories. Paleobiology, 6, 444–450.CrossRefGoogle Scholar
  129. Valentine, J. W., & Erwin, D. H. (1983). Patterns of diversification of higher taxa: A test of macroevolutionary paradigms. In J. Chaline (Ed.), Modalities et Rhythmes de L’Evolution Mechanismes de Speciation (pp. 220–233). Paris: Cnrs.Google Scholar
  130. Valentine, J. W., & May, C. L. (1996). Hierarchies in biology and paleontology. Paleobiology, 22, 23–33.CrossRefGoogle Scholar
  131. Van Valen, L. (1973). A new evolutionary law. Evolutionary Theory, 1, 1–30.Google Scholar
  132. Voje, K. L., Nolen, O. H., Liow, L. H., & Stenseth, N. C. (2015). The role of biotic forces in driving macroevolution: Beyond the Red Queen. Proceedings of the Royal Society of London B. doi: 10.1098/rspb.2015.0186.Google Scholar
  133. Vrba, E. (1984). Patterns in the fossil record and evolutionary processes. In M. W. Ho & P. T. Saunders (Eds.), Beyond neo-Darwinism (pp. 115–142). London: Academic Press.Google Scholar
  134. Vrba, E. S. (1989). Levels of selection and sorting with special reference to the species level. Oxford Surveys in Evolutionary Biology, 6, 111–168.Google Scholar
  135. Vrba, E. S., & Eldredge, N. (1984). Individuals, hierarchies and process: Towards a more complete evolutionary theory. Paleobiology, 10, 146–171.CrossRefGoogle Scholar
  136. Wagner, P. J. (1996). Contrasting the underlying patterns of active trends in mophologic evolution. Evolution, 50, 990–1007.CrossRefGoogle Scholar
  137. Wagner, G. P. (2014). Homology, genes, and evolutionary innovation. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  138. Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvobility. Evolution, 50, 967–976.CrossRefGoogle Scholar
  139. Wagner, P. J., Kosnik, M. A., & Lidgard, S. (2006). Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science, 314, 1289–1292.CrossRefGoogle Scholar
  140. Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8, 921–931.CrossRefGoogle Scholar
  141. Wilkins, A. S. (2002). The evolution of developmental pathways. Sunderland, MA: Sinauer Associates.Google Scholar

Copyright information

© US Government (outside the USA) 2017

Authors and Affiliations

  1. 1.Department of Paleobiology, MRC-121National Museum of Natural HistoryWashingtonUSA

Personalised recommendations