Eric Davidson and deep time

  • Douglas H. ErwinEmail author
Original Paper
Part of the following topical collections:
  1. Causality, genomic regulation, and evolution in the post-genomic era: a tribute to Eric Davidson


Eric Davidson had a deep and abiding interest in the role developmental mechanisms played in generating evolutionary patterns documented in deep time, from the origin of the euechinoids to the processes responsible for the morphological architectures of major animal clades. Although not an evolutionary biologist, Davidson’s interests long preceded the current excitement over comparative evolutionary developmental biology. Here I discuss three aspects at the intersection between his research and evolutionary patterns in deep time: First, understanding the mechanisms of body plan formation, particularly those associated with the early diversification of major metazoan clades. Second, a critique of early claims about ancestral metazoans based on the discoveries of highly conserved genes across bilaterian animals. Third, Davidson’s own involvement in paleontology through a collaborative study of the fossil embryos from the Ediacaran Doushantuo Formation in south China.


Eric Davidson Evolution Gene regulatory networks Body plan Cambrian radiation Echinoderms 



Earlier versions of this paper were presented at a workshop on “From Genome to Gene” at the Jacques Loeb Centre for the History and Philosophy of the Life Sciences at Ben Gurion University of the Negev in November 2015, and at a memorial symposium for Eric Davidson at Caltech in April 2016. I appreciate the invitation to contribute this paper from Ute Deichmann and Michel Morange. This paper incorporates research funded by the NASA National Astrobiology Institute.


  1. Arendt, D., Denes, A. S., Jekely, G., & Tessmar-Raible, K. (2008). The evolution of nervous system centralization. Philosophical Transactions of the Royal Society, B, 363, 1523–1528.CrossRefGoogle Scholar
  2. Arendt, D., & Wittbrodt, J. (2001). Reconstructing the eyes of Urbilateria. Proceedings of the Royal Society London, Series B, 356, 1545–1563.CrossRefGoogle Scholar
  3. Bengtson, S., & Budd, G. (2004). Comment on “Small bilaterian fossils from 40 to 55 million years before the Cambrian”. Science, 306, 1291a.CrossRefGoogle Scholar
  4. Bengtson, S., Cunningham, J. A., Yin, C. Y., & Donoghue, P. C. J. (2012). Merciful death for the “earliest bilaterian,” Vernanimalcula. Evolution & Development, 14, 421–427.CrossRefGoogle Scholar
  5. Birnbaum, D., Coulier, F., Pebusque, M.-J., & Pontarotti, P. (2000). “Paleogenomics”: Looking in the past into the future. Journal of Experimental Zoology (Molecular and Developmental Evolution), 288, 21–22.CrossRefGoogle Scholar
  6. Bottjer, D. J. (2016). Eric Davidson’s career as a paleontologist. Developmental Biology, 412, S38–S40. doi: 10.1016/j.ydbio.2016.01.026.CrossRefGoogle Scholar
  7. Bottjer, D. J., Davidson, E. H., Peterson, K. J., & Cameron, R. A. (2006). Paleogenomics of echinoderms. Science, 314, 956–960.CrossRefGoogle Scholar
  8. Britten, R. J., & Davidson, E. H. (1969). Gene regulation for higher cells: A theory. Science, 165, 349–357.CrossRefGoogle Scholar
  9. Britten, R. J., & Davidson, E. H. (1971). Repetitive and non-repetitive DNA sequences and speculation on the origins of evolutionary novelty. Quarterly Review of Biology, 46, 111–138.CrossRefGoogle Scholar
  10. Cameron, A. R., Peterson, K. J., & Davidson, E. H. (1998). Developmental gene regulation and the evolution of large animal body plans. American Zoologist, 38, 609–620.CrossRefGoogle Scholar
  11. Carroll, S., Grenier, J., & Weatherbee, S. (2001). From DNA to diversity. Malden: Blackwell Scientific.Google Scholar
  12. Chen, J. Y., Bottjer, D. J., Davidson, E. H., Li, G., Gao, F., Cameron, R. A., et al. (2010). Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Research, 179, 221. doi: 10.1016/j.precamres.2010.03.001.CrossRefGoogle Scholar
  13. Chen, J. Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., et al. (2004). Small bilaterian fossils from 40 to 55 million years before the cambrian. Science, 305, 218–222.CrossRefGoogle Scholar
  14. Chen, J. Y., Oliveri, P., Gao, F., Dornbos, S. Q., Li, C. W., Bottjer, D. J., et al. (2002). Precambrian animal life: Probable developmental and adult cnidarian forms from Southwest China. Developmental Biology, 248, 182–196.CrossRefGoogle Scholar
  15. Chen, J. Y., Oliveri, P., Li, C.-W., Zhou, G. Q., Gao, F., Hagadorn, J. W., et al. (2000). Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China. Proceedings of the National Academy of Sciences, USA, 97, 4457–4462.CrossRefGoogle Scholar
  16. Davidson, E. H. (1986). Gene activity in early development (3rd ed.). Orlando, FL: Academic Press.Google Scholar
  17. Davidson, E. H. (1989). Lineage-specific gene-expression and the regulative capacities of the sea-urchin embryo—a proposed mechanism. Development, 105, 421–445.Google Scholar
  18. Davidson, E. H. (1990). How embryos work—a comparative view of diverse modes of cell fate specification. Development, 108, 365–389.Google Scholar
  19. Davidson, E. H. (1991). Spatial mechanisms of gene-regulation in metazoan embryos. Development, 113, 1–26.Google Scholar
  20. Davidson, E. H. (2001). Genomic regulatory systems. San Diego: Academic Press.Google Scholar
  21. Davidson, E. H. (2006). The regulatory genome. San Diego: Academic Press.Google Scholar
  22. Davidson, E. H., & Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science, 311, 796–800.CrossRefGoogle Scholar
  23. Davidson, E. H., Peterson, K. J., & Cameron, R. A. (1995). Origin of bilaterian body plans: Evolution of developmental mechanisms. Science, 270, 1319–1325.CrossRefGoogle Scholar
  24. Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C. H., et al. (2002). A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Developmental Biology, 246, 162–190.CrossRefGoogle Scholar
  25. De Robertis, E. M., & Sasai, Y. (1996). A common plan for dorsoventral patterning in bilateria. Nature, 380, 37–40.CrossRefGoogle Scholar
  26. Donoghue, P. C. J., Bengtson, S., Dong, X. P., Gostling, N. J., Huldtgren, T., Cunningham, J. A., et al. (2006). Synchrotron X-ray tomographic microscopy of fossil embryos. Nature, 442, 680–683.CrossRefGoogle Scholar
  27. Dornbos, S. Q., Bottjer, D. J., Chen, I. A., Oliveri, P., Gao, F., & Li, C.-W. (2005). Precambrian animal life: taphonomy of phosphatized metazoan embryos from southwest China. Lethaia, 38, 101–109.CrossRefGoogle Scholar
  28. Erkenbrack, E. M., Ako-Asare, K., Miller, E., Tekelenburg, S., Thompson, J. R., & Romano, L. (2016). Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms. Developmental Genes and Evolution, 226, 37–45. doi: 10.1007/s00427-015-0527-y.CrossRefGoogle Scholar
  29. Erkenbrack, E. M., & Davidson, E. H. (2015). Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses. Proceedings of the National Academy of Sciences, USA, 112, E4075–E4084. doi: 10.1073/pnas.1509845112.CrossRefGoogle Scholar
  30. Erwin, D. H. (2011). Evolutionary uniformitarianism. Developmental Biology, 357, 27–34.CrossRefGoogle Scholar
  31. Erwin, D. H., & Davidson, E. H. (2002). The last common bilaterian ancestor. Development, 129, 3021–3032.Google Scholar
  32. Erwin, D. H., & Davidson, E. H. (2009). The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics, 10, 141–148. doi: 10.1038/nrg2499.CrossRefGoogle Scholar
  33. Erwin, D. H., Valentine, J. W., & Jablonski, D. (1997). The origin of animal bodyplans. American Scientist, 85, 126–137.Google Scholar
  34. Gao, F., & Davidson, E. H. (2008). Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proceedings of the National Academy of Sciences, USA, 105, 6091–6096.CrossRefGoogle Scholar
  35. Hinman, V. F., Nguyen, A. T., Cameron, R. A., & Davidson, E. H. (2003). Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proceedings of the National Academy of Sciences, USA, 100, 13356–13361.CrossRefGoogle Scholar
  36. Hinman, V. F., Nguyen, A., & Davidson, E. H. (2007). Caught in the evolutionary act: Precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins. Developmental Biology, 312, 584–595.CrossRefGoogle Scholar
  37. Lichtneckert, R., & Reichert, H. (2005). Insights into the urbilaterian brain: Conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity, 94, 465–477.CrossRefGoogle Scholar
  38. Lowe, C. J., Terasaki, M., Wu, M. M., Freeman, R. M., Jr., Runft, L., Kwan, K., et al. (2006). Dorsoventral patterning in hemichordates: Insights into early chordate evolution. PLoS Biology, 4, e291.CrossRefGoogle Scholar
  39. Miller, D. J., Ball, E. E., & Technau, U. (2005). Cnidarians and ancestral gene complexity in the animal kingdom. Trends in Genetics, 21, 536–539.CrossRefGoogle Scholar
  40. Nielsen, C. (2013). Life cycle evolution: Was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? BMC Evolutionary Biology. doi: 10.1186/1471-2148-13-171.Google Scholar
  41. Peter, I. S., & Davidson, E. H. (2015). Genomic control processes. Development and evolution. London: Academic Press.Google Scholar
  42. Peterson, K. J., Arenas-Mena, C., & Davidson, E. H. (2000a). The A/P axis in echinoderm ontogeny and evolution: Evidence from fossils and molecules. Evolution & Development, 2, 93–101.CrossRefGoogle Scholar
  43. Peterson, K. J., Cameron, A. R., & Davidson, E. H. (1997). Set-aside cells in maximal indirect development: Evolutionary and developmental significance. BioEssays, 19, 623–631.CrossRefGoogle Scholar
  44. Peterson, K. J., Cameron, R. A., & Davidson, E. H. (2000b). Bilaterian origins: Significance of new experimental observations. Developmental Biology, 219, 1–17.CrossRefGoogle Scholar
  45. Peterson, K. J., & Davidson, E. H. (2000). Regulatory evolution and the origin of the bilaterians. Proceedings of the National Academy of Sciences, USA, 97, 4430–4433.CrossRefGoogle Scholar
  46. Pueyo, J. I., & Couso, J. P. (2005). Parallels between the proximal-distal development of vertebrate and arthropod appendages: Homology without an ancestor? Current Opinion in Genetics & Development, 15(4), 439.CrossRefGoogle Scholar
  47. Rothenberg, E. V. (2016). Eric Davidson: Steps to a gene regulatory network for development. Developmental Biology, 412, S7–S19.CrossRefGoogle Scholar
  48. Scott, M. P. (1994). Intimations of a creature. Cell, 79, 1121–1124.CrossRefGoogle Scholar
  49. Shenk, M. A., & Steel, M. A. (1994). A molecular shapshot of the metazoan ‘Eve’. Trends in Biochemical Science, 18, 459–463.CrossRefGoogle Scholar
  50. Thompson, J. R., Petsios, E., Davidson, E. H., Erkenbrack, E. M., Gao, F., & Bottjer, D. J. (2015). Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid. Scientific Reports. doi: 10.1038/srep15541.Google Scholar
  51. Tweedt, S. M., & Erwin, D. H. (2015). Origin of metazoan developmental toolkits and their expression in the fossil record. In I. Ruiz-Trillo & A. M. Nedelcu (Eds.), Evolution of multicellularity (pp. 47–77). London: Academic Press.Google Scholar
  52. Valentine, J. W., & Campbell, C. A. (1975). Genetic regulation and the fossil record. American Scientist, 63, 673–680.Google Scholar
  53. Valentine, J. W., Jablonski, D., & Erwin, D. H. (1999). Fossils, molecules and embryos: New perspectives on the Cambrian explosion. Development, 126, 851–859.Google Scholar
  54. Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews Genetics, 8, 473–479.CrossRefGoogle Scholar
  55. Wagner, G. P. (2014). Homology, genes, and evolutionary innovation. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  56. Xiao, S. H., Yun, Y., Knoll, A. H., & Bartley, J. K. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391, 553–558.CrossRefGoogle Scholar
  57. Yin, Z. J., Zhu, M. Y., Davidson, E. H., Bottjer, D. J., Zhao, F. C., & Tafforeau, P. (2015). Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences, USA, 112, E1453–E1460. doi: 10.1073/pnas.1414577112.Google Scholar
  58. Yuh, C. H., Bolouri, H., & Davidson, E. H. (2001). Cis-regulatory logic in the endo16 gene: Switching from a specification to a differentiation mode of control. Development, 128, 617–629.Google Scholar

Copyright information

© US Government (outside the USA) 2017

Authors and Affiliations

  1. 1.Department of Paleobiology, MRC-121National Museum of Natural HistoryWashingtonUSA

Personalised recommendations