Advertisement

History and Philosophy of the Life Sciences

, Volume 36, Issue 1, pp 16–41 | Cite as

What good are abstract and what-if models? Lessons from the Gaïa hypothesis

  • Sébastien DutreuilEmail author
Original Paper

Abstract

This article on the epistemology of computational models stems from an analysis of the Gaïa hypothesis (GH). It begins with James Kirchner’s criticisms of the central computational model of GH: Daisyworld. Among other things, the model has been criticized for being too abstract, describing fictional entities (fictive daisies on an imaginary planet) and trying to answer counterfactual (what-if) questions (how would a planet look like if life had no influence on it?). For these reasons the model has been considered not testable and therefore not legitimate in science, and in any case not very interesting since it explores non actual issues. This criticism implicitly assumes that science should only be involved in the making of models that are “actual” (by opposition to what-if) and “specific” (by opposition to abstract). I challenge both of these criticisms in this article. First by showing that although the testability—understood as the comparison of model output with empirical data—is an important procedure for explanatory models, there are plenty of models that are not testable. The fact that these are not testable (in this restricted sense) has nothing to do with their being “abstract” or “what-if” but with their being predictive models. Secondly, I argue that “abstract” and “what-if” models aim at (respectable) epistemic purposes distinct from those pursued by “actual and specific models”. Abstract models are used to propose how-possibly explanation or to pursue theorizing. What-if models are used to attribute causal or explanatory power to a variable of interest. The fact that they aim at different epistemic goals entails that it may not be accurate to consider the choice between different kinds of model as a “strategy“.

Keywords

Gaïa hypothesis Computational models Daisyworld Artificial life Explanation Model validation 

Notes

Acknowledgments

I am indebted to all those present at the EASPLS meeting (Geneva, September 2012) and at the Duke Consortium for the history and philosophy of biology (June, 2013) for giving me their comments on these ideas, especially to Marie Kaiser and Tyler Curtain. I would like also to thank warmly Frédéric Bouchard, Jean Gayon, Philippe Huneman, Arnon Levy, Arnaud Pocheville and Judith Villez as well as an anonymous reviewer who helped me significantly improve earlier versions of this paper. I must finally thank Staffan Müller-Wille for his careful reading which has greatly contributed to the clarification and amelioration of the submitted version.

References

  1. Barberousse, A., & Vorms, M. (2013). Computer simulations and empirical data. In J. M. Durán & E. Arnold (Eds.), Computer simulations and the changing face of scientific experimentation (pp. 29–45). Cambridge: Cambridge Scholars publishing.Google Scholar
  2. Bedau, M. A. (1999). “Can unrealistic computer models illuminate theoretical biology”. In A. S. Wu (Ed.), Proceedings of the 1999 genetic and evolutionary computation conference workshop program, (pp. 20–23). Orlando, FL, July 13.Google Scholar
  3. Bedau, M. (2007). Artificial Life. In W. Gabbay, P. Thagard, & J. Woods (Eds.), Handbook of the philosophy of science, philosophy of biology (Vol. 3, pp. 595–613). Elsevier: North Holland.Google Scholar
  4. Boyle, R., Lenton, T., & Watson, A. (2011). Symbiotic physiology promotes homeostasis in Daisyworld. Journal of Theoretical Biology, 274(1), 170–182.CrossRefGoogle Scholar
  5. Brandon, R. (1990). Adaptation and environment. Princeton, NJ: Princeton University Press.Google Scholar
  6. Caldeira, K., & Kasting, J. (1992). The life span of the biosphere revisited. Nature, 360(6406), 721–723.CrossRefGoogle Scholar
  7. Dawkins, R. (1982). The extended phenotype: The gene as the unit of selection. Oxford, USA: Oxford University Press.Google Scholar
  8. Dick S. J., & Strick J. E. (2005) The living Universe: NASA and the development of astrobiology. New Brunswick, New Jersey, and London: Rutgers University Press.Google Scholar
  9. Dietrich, W., & Perron, J. (2006). The search for a topographic signature of life. Nature, 439(7075), 411–418.CrossRefGoogle Scholar
  10. Doolittle, W. (1981). Is nature really motherly. CoEvolution Quarterly, 29, 58–63.Google Scholar
  11. Downing, K., & Zvirinsky, P. (1999). The simulated evolution of biochemical guilds: Reconciling Gaia theory and natural selection. Artificial Life, 5(4), 291–318.CrossRefGoogle Scholar
  12. Dutreuil, S. (2012). L’hypothèse Gaïa : Pourquoi s’y intéresser même si l’on pense que la Terre n’est pas un organisme? Bulletin de la société d’histoire et d’épistémologie des sciences de la vie, 19(2), 229–241.Google Scholar
  13. Dutreuil, S., (2013) “Comment le modèle Daisyworld peut-il contribuer à l’hypothèse Gaïa?”. In F. Varenne & M. Silberstein (Eds.), Modéliser et simuler. Epistémologies et pratiques de la modélisation et de la simulation. Tome 1. Paris: Editions matériologiques.Google Scholar
  14. Dyke, J., & Harvey, I. (2006). Pushing up the daisies. In L. M. Rocha (Ed.), Artificial Life X, proceedings of the tenth international conference on the simulation and synthesis of living systems (pp. 426–431). Cambridge: MIT Press.Google Scholar
  15. Dyke, J., & Weaver, I. (2013). The emergence of environmental homeostasis in complex ecosystems. PLoS Computational Biology, 9(5), e1003050.CrossRefGoogle Scholar
  16. Forber, P. (2010). Confirmation and explaining how possible. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 41(1), 32–40.CrossRefGoogle Scholar
  17. Franck, S., Block, A., VonBloh, W., et al. (2000). Reduction of biosphere life span as a consequence of geodynamics. Tellus B, 52(1), 94–107.CrossRefGoogle Scholar
  18. Franck, S., Bounama, C., & VonBloh, W. (2006). Causes and timing of future biosphere extinctions. Biogeosciences, 3(1), 85–92.CrossRefGoogle Scholar
  19. Free, A., & Barton, N. (2007). Do evolution and ecology need the Gaia hypothesis? Trends in Ecology & Evolution, 22(11), 611–619.CrossRefGoogle Scholar
  20. Frigg, R. (2010). Models and fiction. Synthese, 172(2), 251–268.CrossRefGoogle Scholar
  21. Gayon, J. (2010). Defining life: Synthesis and conclusions. Origins of Life and Evolution of Biospheres, 40(2), 231–244.CrossRefGoogle Scholar
  22. Godfrey-Smith, P. (2006). The strategy of model-based science. Biology and Philosophy, 21(5), 725–740.CrossRefGoogle Scholar
  23. Godfrey-Smith, P. (2009). Models and fictions in science. Philosophical Studies, 143(1), 101–116.CrossRefGoogle Scholar
  24. Grüne-Yanoff, T., & Weirich, P. (2010). The philosophy and epistemology of simulation: A review. Simulation and Gaming, 41(1), 20–50.CrossRefGoogle Scholar
  25. Harvey, I. (2004). Homeostasis and rein control: From Daisyworld to active perception. In J. Pollack, et al. (Eds.), Proceedings of the ninth international conference on the simulation and synthesis of living systems, ALIFE (Vol. 9, pp. 309–314). Cambridge: MIT Press.Google Scholar
  26. Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169(3), 615–626.CrossRefGoogle Scholar
  27. Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177(2), 213–245.CrossRefGoogle Scholar
  28. Huneman, P. (2012). Computer science meets evolutionary biology: Pure possible processes and the issue of gradualism. In O. Pombo, et al. (Eds.), Special sciences and the unity of science (pp. 137–162). Netherlands: Springer.CrossRefGoogle Scholar
  29. Kirchner, J. (1989). The Gaia hypothesis: Can it be tested. Review of Geophysics, 27(2), 223–235.CrossRefGoogle Scholar
  30. Kirchner, J. (2002). The Gaia hypothesis: Fact, theory, and wishful thinking. Climatic Change, 52(4), 391–408.CrossRefGoogle Scholar
  31. Kirchner, J. (2003). The Gaia hypothesis: Conjectures and refutations. Climatic Change, 58(1), 21–45.CrossRefGoogle Scholar
  32. Lakatos, I. (1978). Science and pseudo science. In J. Worrall & G. Currie (Eds.), The methodology of Scientific Research Programmes, philosophical papers (Vol. 1, pp. 1–7). Cambridge: Cambridge Unviersity Press.CrossRefGoogle Scholar
  33. Lange, M. (1996). Life, ‘artificial life’, and scientific explanation. Philosophy of Science, 63(2), 225–244.CrossRefGoogle Scholar
  34. Lenton, T., & Von Bloh, W. (2001). Biotic feedback extends the life span of the biosphere. Geophysical Research Letters, 28(9), 1715–1718.CrossRefGoogle Scholar
  35. Lenton, T., & Williams, H. (2009). Gaia and Evolution. In E. Crist & H. B. Rinker (Eds.), Gaia in turmoil: Climate change, biodepletion, and earth ethics in an age of crisis (pp. 61–85). Cambridge: MIT Press.Google Scholar
  36. Levy, A. (2012). Models, fictions and realism: Two packages. Philosophy of Science, 79(5), 738–748.CrossRefGoogle Scholar
  37. Li, K., Pahlevan, K., Kirschvink, J., & Yung, Y. (2009). Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere. Proceedings of the National Academy of Sciences, 106(24), 9576–9579.CrossRefGoogle Scholar
  38. Lovelock, J. (1965). A physical basis for life detection experiments. Nature, 207, 568–570.CrossRefGoogle Scholar
  39. Lovelock, J. (1983). 1983, “Daisy world—a cybernetic proof of the Gaia hypothesis”. Coevolution Quarterly, Summer, 38, 66–72.Google Scholar
  40. Lovelock, J., & Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus, 26(1–2), 2–10.CrossRefGoogle Scholar
  41. Lovelock, J., & Whitfield, M. (1982). Life span of the biosphere. Nature, 296, 561–563.CrossRefGoogle Scholar
  42. McCain, K., & Weslake, B. (2013). Evolutionary theory and the epistemology of science. In K. Kampourakis (Ed.), The philosophy of biology: A companion for educators. Netherlands: Springer.Google Scholar
  43. McDonald-Gibson, J., Dyke, J., DiPaolo, E., & Harvey, I. (2008). Environmental regulation can arise under minimal assumptions. Journal of Theoretical Biology, 251(4), 653–666.CrossRefGoogle Scholar
  44. Morange, M. (2003). La Vie expliquée? : 50 ans après la double hélice. Paris: Odile Jacob.Google Scholar
  45. Oreskes, N., Shrader-Frechette, K., Belitz, K., et al. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263(5147), 641–646.CrossRefGoogle Scholar
  46. Parker, W. S. (2009). Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169(3), 483–496.CrossRefGoogle Scholar
  47. Pigliucci, M. (2008). The borderlands between science and philosophy: An introduction. The Quarterly Review of Biology, 83(1), 7–15.CrossRefGoogle Scholar
  48. Pigliucci, M. (2013). On the different ways of’doing theory’ in biology. Biological Theory, 7(4), 287–297.CrossRefGoogle Scholar
  49. Pocheville A., 2010, La niche écologique: concepts, modèles, applications. PhD thesis, Ecole Normale Supérieure, Ecole doctorale Frontières du Vivant.Google Scholar
  50. Reydon, T. A. (2012). How-possibly explanations as genuine explanations and helpful heuristics: A comment on Forber. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 302–310.CrossRefGoogle Scholar
  51. Ruse, M. (2013). The Gaia hypothesis: Science on a pagan planet. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  52. Sarkar, S., & Plutynski, A. (2010). A Companion to the philosophy of biology. Hoboken, USA: Blackwell Publishing Ltd.Google Scholar
  53. Scheiner, S. M., & Willig, M. (2008). A general theory of ecology. Theoretical Ecology, 1(1), 21–28.CrossRefGoogle Scholar
  54. Sober, E. (1991). Learning from functionalism: prospects for strong artificial life. In C. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Artificial Life II (pp. 749–766). Boulder: Oxford Westview Press.Google Scholar
  55. Sober, E. (2008). Evidence and evolution: The logic behind the science. New York, USA: Cambridge University Press.CrossRefGoogle Scholar
  56. Strevens, M. (2004). The causal and unification approaches to explanation unified—causally. Noûs, 38(1), 154–176.CrossRefGoogle Scholar
  57. Watson, A. (1999). Coevolution of the Earth’s environment and life: Goldilocks, Gaia and the anthropic principle. In G. Y. Craig & J. H. Hull (Eds.), James Hutton—Present and Future. Geological Society (Vol. 150, pp. 75–88). London: Special Publications.Google Scholar
  58. Watson, A., & Lovelock, J. (1983). Biological homeostasis of the global environment: The parable of Daisyworld. Tellus B, 35(4), 284–289.CrossRefGoogle Scholar
  59. Weaver, I., & Dyke, J. (2012). The importance of timescales for the emergence of environmental self-regulation. Journal of Theoretical Biology, 313(21), 172–180.CrossRefGoogle Scholar
  60. Weisberg, M. (2006). Robustness analysis. Philosophy of Science, 73(5), 730–742.CrossRefGoogle Scholar
  61. Weisberg, M. (2007). Who is a modeler? The British Journal for the Philosophy of Science, 58(2), 207–233.CrossRefGoogle Scholar
  62. Weisberg, M. (2013). Simulation and similarity: using models to understand the world. New York, USA: Oxford University Press.CrossRefGoogle Scholar
  63. Williams, H., & Lenton, T. (2008). Environmental regulation in a network of simulated microbial ecosystems. Proceedings of the National Academy of Sciences, 105(30), 10432–10437.CrossRefGoogle Scholar
  64. Williams, H., & Noble, J. (2005). “Evolution and the regulation of environmental variables”. In M. S. Capcarrere., et al., Proceedings of VIIIth conference on Artificial Life (332–342). Berlin: Springer.Google Scholar
  65. Winsberg, E. (2003). Simulated experiments: Methodology for a virtual world. Philosophy of Science, 70(1), 105–125.CrossRefGoogle Scholar
  66. Winsberg, E. (2006). Models of success versus the success of models: Reliability without truth. Synthese, 152(1), 1–19.CrossRefGoogle Scholar
  67. Winsberg, E. (2009). A tale of two methods. Synthese, 169(3), 575–592.CrossRefGoogle Scholar
  68. Wood, A. J., Ackland, G. J., Dyke, J. G., Williams, H. T., & Lenton, T. M. (2008). Daisyworld: A review. Reviews of Geophysics, 46(1).Google Scholar
  69. Wood, A., Ackland, G., & Lenton, T. (2006). Mutation of albedo and growth reponse produced oscillations in a spatial Daisyworld. Journal of Theoretical Biology, 242, 188–198.CrossRefGoogle Scholar
  70. Woodward, J. (2010). Causation in biology: Stability, specificity, and the choice of levels of explanation. Biology and Philosophy, 25(3), 287–318.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2014

Authors and Affiliations

  1. 1.UMR 8590 IHPST – Institut d’Histoire et de Philosophie des Sciences et des TechniquesUniversité Paris 1 Panthéon-SorbonneParisFrance

Personalised recommendations