Current Climate Change Reports

, Volume 3, Issue 2, pp 128–140 | Cite as

What Caused the Global Surface Warming Hiatus of 1998–2013?

  • Shang-Ping Xie
  • Yu Kosaka
Decadal Predictability and Prediction (T Delworth, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Decadal Predictability and Prediction


Research into the mechanisms for the global warming slowdown or “hiatus” of 1998–2013 is reviewed here. Observational and modeling studies identify tropical Pacific sea surface temperature variability as a major pacemaker of global mean surface temperature (GMST) change, as corroborated by the GMST increase following a major El Niño event. Specifically, the decadal cooling of the tropical Pacific contributes to the recent global warming hiatus. This tropical Pacific pacemaker effect appears larger for decadal than interannual variability, but the decadal effect remains to be quantified from observations. Our critical review of the literature reveals that the internal and radiatively forced GMST changes are distinct in pattern, energetics, mechanism, and predictability. In contrast to greenhouse gas-induced warming that is spatially uniform in sign and driven by energy perturbations, internal variability in GMST is an order of magnitude smaller than spatial variations, for which ocean-atmosphere interaction is of first-order importance while planetary energetics is not. In fact, decadal variability in GMST is poorly correlated with net radiation at the top of the atmosphere, highlighting the need to distinguish internal and forced GMST change in planetary energy budget. While the planetary energy budget can now be closed observationally over multi-decadal periods, the recent hiatus highlights the need and challenges to measure and quantify decadal changes in both global ocean heat uptake (e.g., for the effect of radiative forcing on the hiatus) and heat redistribution in the ocean. Hiatus research has led to a wide recognition of the importance of internal variability for GMST trends over a decade and longer. The strengthened connection between the climate variability and change communities is an important legacy of hiatus research.


Global warming slowdown Hiatus Anthropogenic warming Tropical Pacific variability Energy theory Ocean heat uptake 



We wish to thank Dr. G. Meehl and an anonymous reviewer for useful comments. This work was supported by the National Key Research and Development Program of China (2016YFA0601804), the U.S. National Science Foundation (1637450), Japan Society for the Promotion of Science (Grant-in-Aid for Young Scientists (A) JP15H05466), the Japanese Ministry of Education, Culture, Sports, Science and Technology (the Arctic Challenge for Sustainability Project), the Japanese Ministry of Environment (the Environment Research and Technology Development Fund 2-1503), and the Japan Science and Technology Agency (Belmont Forum CRA “InterDec”).

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Allan RP, Liu C, Loeb NG, et al. Changes in global net radiative imbalance 1985-2012. Geophys Res Lett. 2014;41:5588–97.CrossRefGoogle Scholar
  2. 2.
    Amaya DJ, Xie S-P, Miller AJ, McPhaden MJ. Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. J Geophys Res Oceans. 2015;120:6782–98.CrossRefGoogle Scholar
  3. 3.
    Boer GJ, Smith DM, Cassou C, Doblas-Reyes F, Danabasoglu G, Kirtman B, Kushnir Y, Kimoto M, Meehl GA, Msadek R, Mueller WA, Taylor KE, Zwiers F, Rixen M, Ruprich-Robert Y, Eade R. The decadal climate prediction project (DCPP) contribution to CMIP6. Geosci Model Dev. 2016;9:3751–77.CrossRefGoogle Scholar
  4. 4.
    Brown PT, Li W, Li L, Ming Y. Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models. Geophys Res Lett. 2014;41:5175–83.CrossRefGoogle Scholar
  5. 5.
    Brown PT, Li W, Xie S-P. Regions of significant influence on unforced global mean surface air temperature variability in climate models. J Geophys Res Atmos. 2015;120:480–94.CrossRefGoogle Scholar
  6. 6.
    Chen X, Wallace JM. ENSO-like variability: 1900-2013. J Clim. 2015;28:9623–41.CrossRefGoogle Scholar
  7. 7.
    Chen X, Tung K-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science. 2014;345:897–903.CrossRefGoogle Scholar
  8. 8.
    Chikamoto Y, Timmermann A, Luo J-J, Mochizuki T, Kimoto M, Watanabe M, Ishii M, Xie S-P, Jin F-F. Skilful multi-year predictions of tropical trans-basin climate variability. Nature Comm. 2015;6:6869.CrossRefGoogle Scholar
  9. 9.
    Chikamoto Y, Mochizuki T, Timmermann A, Kimoto M, Watanabe M. Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys Res Lett. 2016;43:7143–51.CrossRefGoogle Scholar
  10. 10.
    Church JA, Clark PU, Cazenave, et al. Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 1137–216. doi: 10.1017/ CBO9781107415324.026.Google Scholar
  11. 11.
    Clement AC, DiNezio P, Deser C. Rethinking the ocean’s role in the Southern Oscillation. J Clim. 2011;24:4056–72.CrossRefGoogle Scholar
  12. 12.
    Cohen JL, Furtado JC, Barlow M, Alexeev VA, Cherry JE. Asymmetric seasonal temperature trends. Geophys Res Lett. 2012;39:L04705.Google Scholar
  13. 13.
    Collins M, Knutti R, Arblaster J, et al. Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 1029–136. doi: 10.1017/CBO9781107415324.024.Google Scholar
  14. 14.
    Dai A, Fyfe JC, Xie S-P, Dai X. Decadal modulation of global surface temperature by internal climate variability. Nature Clim Change. 2015;5:555–9.CrossRefGoogle Scholar
  15. 15.
    Dee DP, Uppala SM, Simmons AJ, et al. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc. 2011;137:553–97.CrossRefGoogle Scholar
  16. 16.
    Delworth TL, Broccoli AJ, Rosati A, et al. GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim. 2006;19:643–74.CrossRefGoogle Scholar
  17. 17.
    Delworth TL, Zeng F, Rosati A, Vecchi GA, Wittenberg AT. A link between the hiatus in global warming and North American drought. J Clim. 2015;28:3834–45.CrossRefGoogle Scholar
  18. 18.
    Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature. 2008;453:1090–3.CrossRefGoogle Scholar
  19. 19.
    Douville H, Voldoire A, Geoffroy O. The recent global warming hiatus: what is the role of Pacific variability? Geophys Res Lett. 2015;42:880–88. doi: 10.1002/2014GL062775.
  20. 20.
    Easterling DR, Wehner MF. Is the climate warming or cooling? Geophys Res Lett. 2009;36:L08706.CrossRefGoogle Scholar
  21. 21.
    England MH, McGrefor S, Spence P, et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim Change. 2014;4:222–7.CrossRefGoogle Scholar
  22. 22.
    Flato G, Marotzke J, Abiodun B, et al. Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 741–866. doi: 10.1017/CBO9781107415324.020.Google Scholar
  23. 23.
    Foster G, Rahmstorf S. Global temperature evolution 1979–2010. Environ Res Lett. 2011;6:044022.CrossRefGoogle Scholar
  24. 24.
    Fyfe JC, Gillett NP. Recent observed and simulated warming. Nature Clim Change. 2014;4:15–151.CrossRefGoogle Scholar
  25. 25.
    Fyfe JC, et al. Making sense of the early-2000s warming slowdown. Nature Clim Change. 2016;6:224–8.CrossRefGoogle Scholar
  26. 26.
    Gleckler PJ, Durack PJ, Stouffer RJ, Johnson GC, Forest CE. Industrial-era global ocean heat uptake doubles in recent decades. Nature Clim Change. 2016;6:394–8.CrossRefGoogle Scholar
  27. 27.
    Gouretski V, Reseghetti F. On depth and temperature biases in bathythermograph data: development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res I. 2010;57:812–33.CrossRefGoogle Scholar
  28. 28.
    Gregory JM, Ingram WJ, Palmer MA, et al. A new method for diagnosing radiative forcing and climate sensiticity. Geophys Res Lett. 2004;31:L03205.Google Scholar
  29. 29.
    Hansen J, Sato M, Kharecha P, von Schuckmann K. Earth’s energy imbalance and implications. Atmos Chem Phys. 2011;11:13421–49.CrossRefGoogle Scholar
  30. 30.
    Hausfather Z, Cowtan K, Clarke DC, Jacobs P, Richardson M, Rohde R. Assessing recent warming using instrumentally homogeneous sea surface temperature records. Science Adv. 2017;3:e1601207.CrossRefGoogle Scholar
  31. 31.
    Held IM, et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J Clim. 2010;23:2418–27.CrossRefGoogle Scholar
  32. 32.
    Henley BJ, Meehl GA, Power SB, et al. Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. Env Res Lett. 2017; doi: 10.1088/1748-9326/aa5cc8. in press Google Scholar
  33. 33.
    Huang RX. Heaving modes in the world oceans. Clim Dynam. 2015;45:3563–91. doi: 10.1007/s00382-015-2557-6.CrossRefGoogle Scholar
  34. 34.
    Huber M, Knutti R. Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat Geosci. 2014;7:651–6.CrossRefGoogle Scholar
  35. 35.
    Jia F, Wu L. A study of response of the equatorial Pacific SST to doubled-CO2 forcing in the coupled CAM-1.5-layer reduced-gravity ocean model. J Phys Oceanogr. 2013;43:1288–300.CrossRefGoogle Scholar
  36. 36.
    Ishii M, Kimoto M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr. 2009;65:287–99.CrossRefGoogle Scholar
  37. 37.
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc. 1996;77:437–71.CrossRefGoogle Scholar
  38. 38.
    Kamae Y, Shiogama H, Watanabe M, Ishii M, Ueda H, Kimoto M. Recent slowdown of tropical upper tropospheric warming associated with Pacific climate variability. Geophys Res Lett. 2015;42:2995–3003.CrossRefGoogle Scholar
  39. 39.
    Karl TR, Arguez A, Huang B, et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science. 2015;348:1469–72.CrossRefGoogle Scholar
  40. 40.
    Kaufmann RK, Kauppi H, Mann ML, Stock JH. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Natl Acad Sci U S A. 2011;108:11790–3.CrossRefGoogle Scholar
  41. 41.
    Kirtman B, Power SB, Adedoyin JA, et al. Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 953–1028. doi: 10.1017/CBO9781107415324.023.Google Scholar
  42. 42.
    Kobayashi S, Ota Y, Harada Y, et al. The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan. 2015;93:5–48.CrossRefGoogle Scholar
  43. 43.
    Kosaka Y, Xie S-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature. 2013;501:403–7.CrossRefGoogle Scholar
  44. 44.
    Kosaka Y, Xie S-P. Tropical Pacific influence on the recent hiatus in surface global warming. US CLIVAR Variations. 2015;13(3):10–5.Google Scholar
  45. 45.
    Kosaka Y, Xie S-P. The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat Geosci. 2016;9:669–73.CrossRefGoogle Scholar
  46. 46.
    Kucharski F, Ikram F, Molteni F, et al. Atlantic forcing of Pacific decadal variability. Clim Dynam. 2015;46:2337–51.CrossRefGoogle Scholar
  47. 47.
    Kuntz LB, Schrag DP. Impact of Asian aerosol forcing on tropical Pacific circulation, and the relationship to global temperature trends. J Geophys Res Atmos. 2016;121:14403–13.CrossRefGoogle Scholar
  48. 48.
    Lau N-C. 2015 Bernhard Haurwitz memorial lecture: model diagnosis of el Niño teleconnections to the global atmosphere–ocean system. Bull Am Meteorol Soc. 2016;97:981–8.CrossRefGoogle Scholar
  49. 49.
    Lee S-K, Park W, Baringer MO, et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat Geosci. 2015;8:445–9.CrossRefGoogle Scholar
  50. 50.
    Levitus S, Antonov JI, Boyer TP, et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett. 2012;39:L10603.CrossRefGoogle Scholar
  51. 51.
    Lewandowsky S, Risbey JS, Oreskes N. On the definition and identifiability of the alleged “hiatus” in global warming. Sci Rep. 2015;5:16784.CrossRefGoogle Scholar
  52. 52.
    Li X, Xie S-P, Gille ST, Yoo C. Atlantic-induced pan-tropical climate change over the past three decades. Nature Clim Change. 2016;6:275–9.CrossRefGoogle Scholar
  53. 53.
    Lin I-I, Pun I-F, Lien C-C. “Category-6” supertyphoon Haiyan in global warming hiatus: contribution from subsurface ocean warming. Geophys Res Lett. 2014;41:8547–53.CrossRefGoogle Scholar
  54. 54.
    Liu W, Xie S-P, Lu J. Tracking ocean heat uptake during the surface warming hiatus. Nature Comm. 2016;7:10926.CrossRefGoogle Scholar
  55. 55.
    Loeb NG, Lyman JM, Johnson GC, et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci. 2012;5:110–3.CrossRefGoogle Scholar
  56. 56.
    Luo J-J, Sasaki W, Masumoto Y. Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci U S A. 2012;109:18701–6.CrossRefGoogle Scholar
  57. 57.
    Lyman JM, Johnson GC. Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J Clim. 2014;27:1945–57.CrossRefGoogle Scholar
  58. 58.
    Maher N, Sen Gupta A, England MH. Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys Res Lett. 2014;41:5978–86.CrossRefGoogle Scholar
  59. 59.
    Maher N, McGregor S, England MH, Sen Gupta A. Effects of volcanism on tropical variability. Geophys Res Lett. 2015;42:6024–33.CrossRefGoogle Scholar
  60. 60.
    Manabe S, Stouffer RJ. Role of ocean in global warming. J Meteorol Soc Japan. 2007;85B:385–403.CrossRefGoogle Scholar
  61. 61.
    Marotzke J, Forster PM. Forcing, feedback and internal variability in global temperature trends. Nature. 2015;517:565–70.CrossRefGoogle Scholar
  62. 62.
    McGregor S, Timmermann A, Stuecker MF, et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Clim Change. 2014;4:888–92.CrossRefGoogle Scholar
  63. 63.
    Meehl GA, Teng H. Regional precipitation simulations for the mid-1970s shift and early-2000s hiatus. Geophys Res Lett. 2014;41:7658–65.CrossRefGoogle Scholar
  64. 64.
    Meehl GA, Hu A, Santer BD. The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J Clim. 2009;22:780–92.CrossRefGoogle Scholar
  65. 65.
    Meehl GA, Arblaster JM, Fasullo JT, Hu AX, Trenberth KE. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim Change. 2011;1:360–4.CrossRefGoogle Scholar
  66. 66.
    Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim. 2013;26:7298–310.CrossRefGoogle Scholar
  67. 67.
    Meehl GA, Teng H, Arblaster JM. Climate model simulations of the observed early-2000s hiatus of global warming. Nature Clim Change. 2014;4:898–902. doi: 10.1038/NCLIMATE2357.CrossRefGoogle Scholar
  68. 68.
    Meehl GA, Hu A, Teng H. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nature Comm. 2016a;7:11718. doi: 10.1038/NCOMMS11718.CrossRefGoogle Scholar
  69. 69.
    Meehl GA, Hu A, Santer BD, Xie S-P. Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nature Clim Change. 2016b;6:1005–8. doi: 10.1038/nclimate3107.CrossRefGoogle Scholar
  70. 70.
    Mei W, Xie S-P, Primeau F, McWilliams JF, Pasquero C. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Science Adv. 2015;1:e1500014.CrossRefGoogle Scholar
  71. 71.
    Merrifield MA. A shift in western tropical Pacific sea level trends during the 1990s. J Clim. 2011;24:4126–38.CrossRefGoogle Scholar
  72. 72.
    Middlemas EA, Clement AC. Spatial patterns and frequency of unforced decadal-scale changes in global mean surface temperature in climate models. J Clim. 2016;29:6245–57.CrossRefGoogle Scholar
  73. 73.
    Mochizuki T, Kimoto M, Watanabe M, Chikamoto Y, Ishii M. Interbasin effects of the Indian Ocean on Pacific decadal climate change. Geophys Res Lett. 2016;43:7168–75.CrossRefGoogle Scholar
  74. 74.
    Morice CP, Kennedy JJ, Rayner NA, Jones PD. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res. 2012;117:D08101.CrossRefGoogle Scholar
  75. 75.
    Murphy DM, Solomon S, Portmann RW, et al. An observationally based energy balance for the Earth since 1950. J Geophys Res. 2009;114:D17107.CrossRefGoogle Scholar
  76. 76.
    National Academies of Sciences, Engineering, and Medicine. Frontiers in decadal climate variability: proceedings of a workshop. Washington, DC: National Academies Press; 2016. doi: 10.17226/23552.Google Scholar
  77. 77.
    Neelin JD, Battisti DS, Hirst AC, et al. ENSO theory. J Geophys Res Oceans. 1998;103:14261–90.CrossRefGoogle Scholar
  78. 78.
    Newman M, Alexander MA, Ault TR, et al. The Pacific decadal Oscillation, revisited. J Clim. 2016;29:4399–427.CrossRefGoogle Scholar
  79. 79.
    Okumura YM. Origins of tropical Pacific decadal variability: role of stochastic atmospheric forcing from the South Pacific. J Clim. 2013;26:9791–6.CrossRefGoogle Scholar
  80. 80.
    Outten S, Thorne P, Bethke I, Seland Ø. Investigating the recent apparent hiatus in surface temperature increases: 1. Construction of two 30-member Earth system model ensembles. J Geophys Res Atmos. 2015;120:8575–96.CrossRefGoogle Scholar
  81. 81.
    Palmer MD, McNeall DJ. Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ Res Lett. 2014;9:034016.CrossRefGoogle Scholar
  82. 82.
    Palmer MD, Haines K, Tett SFB, Ansell TJ. Isolating the signal of ocean global warming. Geophys Res Lett. 2007;34:L23610.CrossRefGoogle Scholar
  83. 83.
    Power S, Casey T, Folland C, Colman A, Mehta V. Inter-decadal modulation of the impact of ENSO on Australia. Clim Dynam. 1999;15:319–24.CrossRefGoogle Scholar
  84. 84.
    Risbey JS, Lewandowsky S, Langlais C, et al. Well-estimated global surface warming in climate projections selected for ENSO phase. Nature Clim Change. 2014;4:835–40.CrossRefGoogle Scholar
  85. 85.
    Riser SC, Freeland HJ, Roemmich D, et al. Fifteen years of ocean observations with the global Argo array. Nature Clim Change. 2016;6:145–53.CrossRefGoogle Scholar
  86. 86.
    Roemmich D, Church J, Gilson J, et al. Unabated planetary warming and its ocean structure since 2006. Nature Clim Change. 2015;5:240–5.CrossRefGoogle Scholar
  87. 87.
    Santer BD, Bonfils C, Painter JF, et al. Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci. 2014;7:185–9.CrossRefGoogle Scholar
  88. 88.
    Santer BD, Solomon S, Bonfils C, et al. Observed multivariable signals of late 20th and early 21st century volcanic activity. Geophys Res Lett. 2015;42:500–9. doi: 10.1002/2014GL062366.CrossRefGoogle Scholar
  89. 89.
    Schmidt GA, Shindell DT, Tsigaridis K. Reconciling warming trends. Nat Geosci. 2014;7:158–60.CrossRefGoogle Scholar
  90. 90.
    Seneviratne SI, Donat M, Mueller B, Alexander LV. No pause in the increase of hot temperature extremes. Nature Clim Change. 2014;4:161–3.CrossRefGoogle Scholar
  91. 91.
    Smith DM, Booth BBB, Dunstone NJ, Eade R, Hermanson L, Jones GS, Scaife AA, Sheen KL, Thompson V. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nature Clim Change. 2016;6:936–40. doi: 10.1038/NCLIMATE3058.CrossRefGoogle Scholar
  92. 92.
    Stocker TF, Qin D, Plattner G-K, et al. Technical summary. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 33–115. doi: 10.1017/CBO9781107415324.005.Google Scholar
  93. 93.
    Takahashi C, Watanabe M. Pacific trade winds accelerated by aerosol forcing over the past two decades. Nature Clim Change. 2016;6:768–72.CrossRefGoogle Scholar
  94. 94.
    Thoma M, Greatbatch RJ, Kadow C, Gerdes R. Decadal hindcasts initialized using observed surface wind stress: evaluation and prediction out to 2024. Geophys Res Lett. 2015;42:6454–61.CrossRefGoogle Scholar
  95. 95.
    Trenberth KE, Fasullo JT, Balmaseda MA. Earth’s energy imbalance. J Clim. 2014;27:3129–44.CrossRefGoogle Scholar
  96. 96.
    Wang C-Y, Xie S-P, Kosaka Y, Liu Q, Zheng X-T. Global influence of tropical Pacific variability with implications for global warming slowdown. J Clim. 2017;30:2679–95.Google Scholar
  97. 97.
    Watanabe M, Shiogama H, Tatebe H, Hayashi M, Ishii M, Kimoto M. Contribution of natural decadal variability to global warming acceleration and hiatus. Nature Clim Change. 2014;4:893–7.CrossRefGoogle Scholar
  98. 98.
    Willis JK, Roemmich D, Cornuelle B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res. 2004;109:C12036.CrossRefGoogle Scholar
  99. 99.
    Xie P, Arkin PA. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc. 1997;78:2539–58.CrossRefGoogle Scholar
  100. 100.
    Xie S-P, Lu B, Xiang B. Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat Geosci. 2013;6:828–32.CrossRefGoogle Scholar
  101. 101.
    Xie S-P, Kosaka Y, Okumura YM. Distinct energy budgets for anthropogenic and natural changes during global warming hiatus. Nat Geosci. 2016;9:29–33.CrossRefGoogle Scholar
  102. 102.
    Yan X-H, Boyer T, Trenberth K, Karl TR, Xie S-P, Nieves V, Tung K-K, Roemmich D. The global warming hiatus: slowdown or redistribution? Earth's Future. 2016;4:472–82.CrossRefGoogle Scholar
  103. 103.
    Zhang Y, Wallace JM, Battisti DS. ENSO-like interdecadal variability: 1900-93. J Clim. 1997;10:1004–20.CrossRefGoogle Scholar
  104. 104.
    Zhou C, Zelinka MD, Klein SA. Impact of decadal cloud variations on the Earth’s energy budget. Nat Geosci. 2016; doi: 10.1038/NGEO2828.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  2. 2.Physical Oceanography LaboratoryOcean University of China, and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Research Center for Advanced Science and TechnologyUniversity of TokyoTokyoJapan

Personalised recommendations