Current Climate Change Reports

, Volume 3, Issue 1, pp 69–77 | Cite as

Estimating Carbon Budgets for Ambitious Climate Targets

  • H. Damon MatthewsEmail author
  • Jean-Sébastien Landry
  • Antti-Ilari Partanen
  • Myles Allen
  • Michael Eby
  • Piers M. Forster
  • Pierre Friedlingstein
  • Kirsten Zickfeld
Carbon Cycle and Climate (K Zickfeld, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Carbon Cycle and Climate


Carbon budgets, which define the total allowable CO2 emissions associated with a given global climate target, are a useful way of framing the climate mitigation challenge. In this paper, we review the geophysical basis for the idea of a carbon budget, showing how this concept emerges from a linear climate response to cumulative CO2 emissions. We then discuss the difference between a “CO2-only carbon budget” associated with a given level of CO2-induced warming and an “effective carbon budget” associated with a given level of warming caused by all human emissions. We present estimates for the CO2-only and effective carbon budgets for 1.5 and 2 °C, based on both model simulations and updated observational data. Finally, we discuss the key contributors to uncertainty in carbon budget estimates and suggest some implications of this uncertainty for decision-making. Based on the analysis presented here, we argue that while the CO2-only carbon budget is a robust upper bound on allowable emissions for a given climate target, the size of the effective carbon budget is dependent on the how quickly we are able to mitigate non-CO2 greenhouse gas and aerosol emissions. This suggests that climate mitigation efforts could benefit from being responsive to a changing effective carbon budget over time, as well as to potential new information that could narrow uncertainty associated with the climate response to CO2 emissions.


Carbon Budgets Cumulative CO2 Emissions Climate Targets Climate Mitigation 



H.D.M. and J.-S.L. acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC). A.-I.P. was supported by a research grant from Emil Aaltonen foundation.


  1. 1.
    Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature. 2009;458(7242):1163–6.Google Scholar
  2. 2.
    Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term climate change: projections, commitments and irreversibility. In: Stocker TF et al., editors. Climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 1–108.Google Scholar
  3. 3.
    Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci. 2014;7(10):709–15.Google Scholar
  4. 4.
    Frölicher TL, Paynter DJ. Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales. Environ Res Lett. 2015;10(7):075002.CrossRefGoogle Scholar
  5. 5.
    Frölicher TL, Winton M, Sarmiento JL. Continued global warming after CO2 emissions stoppage. Nat Clim Chang. 2014;4(1):40–4.Google Scholar
  6. 6.
    Fyke J, Matthews HD. A probabilistic analysis of cumulative carbon emissions and long-term planetary warming. Environ Res Lett. 2015;10(11):115007.CrossRefGoogle Scholar
  7. 7.
    Gignac R, Matthews HD. Allocating a 2 °C cumulative carbon budget to countries. Environ Res Lett. 2015;10(7):075004.CrossRefGoogle Scholar
  8. 8.
    Gillett NP, Arora VK, Zickfeld K, Merryfield WJ. Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat Geosci. 2011;4(2):83–7.Google Scholar
  9. 9.
    Gillett NP, Arora VK, Matthews D, Allen MR. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J Clim. 2013;26:6844–6858.Google Scholar
  10. 10.
    Gregory JM, Jones CD, Cadule P, Friedlingstein P. Quantifying carbon cycle feedbacks. J Clim. 2009;22(19):5232–50.Google Scholar
  11. 11.
    Haustein K, Allen MR, Forster PM, Otto FEL, Mitchell DM, Matthews HD, et al. A robust real-time Global Warming Index. Sci Rep. 2017 (in press).Google Scholar
  12. 12.
    Hawkins E, Sutton R. The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc. 2009;90(8):1095–107.CrossRefGoogle Scholar
  13. 13.
    IPCC. Climate Change 2014: Synthesis Report. In: Pachauri RK, Meyer, LA, editors. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC; 2014.Google Scholar
  14. 14.
    Landry JS, Matthews HD, Ramankutty N. A global assessment of the carbon cycle and temperature responses to major changes in future fire regime. Clim Chang. 2015;133:179–192.Google Scholar
  15. 15.
    Le Quéré C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, et al. Global carbon budget 2014. Earth Syst Sci Data. 2015;7(1):47–85.Google Scholar
  16. 16.
    Leduc M, Matthews HD, De Elia R. Quantifying the limits of a linear temperature response to cumulative CO2 emissions. J Clim. 2015;28(24):9955–68.CrossRefGoogle Scholar
  17. 17.
    Leduc M, Matthews HD, De Elia R. Regional estimates of the transient climate response to cumulative CO2 emissions. Nat Clim Chang. 2016;6(5):474–8.Google Scholar
  18. 18.
    Lowe JA, Huntingford C, Raper SCB, Jones CD, Liddicoat SK, Gohar LK. How difficult is it to recover from dangerous levels of global warming? Environ Res Lett. 2009;4(1):014012.Google Scholar
  19. 19.
    MacDougall AH. The transient response to cumulative CO2 emissions: a review. Curr Clim Chang Rep. 2016;2:39–47.Google Scholar
  20. 20.
    MacDougall AH, Friedlingstein P. The origin and limits of the near proportionality between climate warming and cumulative CO2 emissions. J Clim. 2015;28(10):4217–30.CrossRefGoogle Scholar
  21. 21.
    MacDougall AH, Zickfeld K, Knutti R, Damon Matthews H. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ Res Lett. 2015.Google Scholar
  22. 22.
    Matthews H, Caldeira K. Stabilizing climate requires near-zero emissions. Geophys Res Lett. 2008;35(4):L04705.CrossRefGoogle Scholar
  23. 23.
    Matthews HD, Solomon S. Irreversible does not mean unavoidable. Science. 2013;340(6131):438–9.CrossRefGoogle Scholar
  24. 24.
    Matthews HD, Weaver AJ. Committed climate warming. Nat Geosci. 2010;3(3):142–3.CrossRefGoogle Scholar
  25. 25.
    Matthews HD, Zickfeld K. Climate response to zeroed emissions of greenhouse gases and aerosols. Nat Clim Chang. 2012;2(5):338–41.CrossRefGoogle Scholar
  26. 26.
    Matthews HD, Gillett NP, Stott PA, Zickfeld K. The proportionality of global warming to cumulative carbon emissions. Nature. 2009;459(7248):829–32.Google Scholar
  27. 27.
    Matthews HD, Solomon S, Pierrehumbert R. Cumulative carbon as a policy framework for achieving climate stabilization. Phil Trans R Soc A. 2012;370:4365–79.CrossRefGoogle Scholar
  28. 28.
    Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang. 2011;109(1–2):213–41.Google Scholar
  29. 29.
    Millar R, Allen M, Rogelj J, Friedlingstein P. The cumulative carbon budget and its implications. Oxf Rev Econ Policy. 2016;32(2):323–42.Google Scholar
  30. 30.
    Millar RJ, Fuglestvedt JS, et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat Geosc. 2017:submitted (in press).Google Scholar
  31. 31.
    Myrna G, Shindell D, Breon FM, Collins W, Fuglestvedt J, Huang J, et al. Anthropogenic and natural radiative forcing. In: Stocker TF et al., editors. Climate change 2013: the physical science basis. contribution of working group I to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2013. p. 659–740.Google Scholar
  32. 32.
    Nohara D, Yoshida Y, Misumi K, Ohba M. Dependency of climate change and carbon cycle on CO2 emission pathways. Environ Res Lett. 2013;8:014047.Google Scholar
  33. 33.
    Nohara D, Tsutsui J, Watanabe S, Tachiiri K, Hajima T, Okajima H, et al. Examination of a climate stabilization pathway via zero-emissions using Earth system models. Environ Res Lett. 2015;10:095005.Google Scholar
  34. 34.
    Otto FEL, Frame DJ, Otto A, Allen MR. Embracing uncertainty in climate change policy. Nat Clim Chang. 2015;5(10):917–20.Google Scholar
  35. 35.
    Pierrehumbert RT. Short-lived climate pollution. Ann Rev Earth Planet Sci. 2014;42(1):341–79.Google Scholar
  36. 36.
    Raupach MR, Davis SJ, Peters GP, Andrew RM, Canadell JG, Ciais P, et al. Sharing a quota on cumulative carbon emissions. Nat Clim Chang. 2014;4(10):873–9.Google Scholar
  37. 37.
    Ricke KL, Caldeira K. Maximum warming occurs about one decade after a carbon dioxide emission. Environ Res Lett. 2014;9(12):124002.CrossRefGoogle Scholar
  38. 38.
    Rogelj J, Schaeffer M, Friedlingstein P, Gillett NP, van Vuuren DP, Riahi K, et al. Differences between carbon budget estimates unravelled. Nat Clim Chang. 2016;6(3):245–52.Google Scholar
  39. 39.
    Smith SM, Lowe JA, Bowerman NHA, Gohar LK, Huntingford C, Allen MR, et al. Equivalence of greenhouse-gas emissions for peak temperature limits. Nat Clim Chang. 2012;2(5):1–4.Google Scholar
  40. 40.
    Solomon S, Plattner GK, Knutti R, Friedlingstein P. Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci. 2009;106(6):1704–9.Google Scholar
  41. 41.
    Tokarska KB, Gillett NP, Weaver AJ, Arora VK, Eby M. The climate response to five trillion tonnes of carbon. Nat Clim Chang. 2016;6(9):851–5.Google Scholar
  42. 42.
    Zickfeld K, Herrington T. The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission. Environ Res Lett. 2015;10(3):031001.CrossRefGoogle Scholar
  43. 43.
    Zickfeld K, Eby M, Damon Matthews H, Weaver AJ. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc Natl Acad Sci. 2009;106(38):16129.Google Scholar
  44. 44.
    Zickfeld K, Arora VK, Gillett NP. Is the climate response to CO2 emissions path dependent? Geophys Res Lett. 2012;39(5):L05703.CrossRefGoogle Scholar
  45. 45.
    Zickfeld K, Eby M, Weaver AJ, Alexander K, Crespin E, Edwards NR, et al. Long-term climate change commitment and reversibility: an EMIC intercomparison. J Clim. 2013;26(16):5782–809.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • H. Damon Matthews
    • 1
    Email author
  • Jean-Sébastien Landry
    • 2
  • Antti-Ilari Partanen
    • 1
    • 3
  • Myles Allen
    • 4
  • Michael Eby
    • 5
  • Piers M. Forster
    • 6
  • Pierre Friedlingstein
    • 7
  • Kirsten Zickfeld
    • 5
  1. 1.Concordia UniversityMontrealCanada
  2. 2.Université de SherbrookeSherbrookeCanada
  3. 3.Finnish Meteorological InstituteHelsinkiFinland
  4. 4.Oxford UniversityOxfordUK
  5. 5.Simon Fraser UniversityVancouverCanada
  6. 6.Leeds UniversityLeedsUK
  7. 7.Exeter UniversityExeterUK

Personalised recommendations