Current Climate Change Reports

, Volume 3, Issue 1, pp 58–68 | Cite as

The Contribution from Methane to the Permafrost Carbon Feedback

  • Claude-Michel NzotungicimpayeEmail author
  • Kirsten Zickfeld
Carbon Cycle and Climate (K Zickfeld, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Carbon Cycle and Climate


Purpose of Review

We assess the level of importance of methane (CH4) in the permafrost carbon feedback by reviewing recent scientific publications.

Recent Findings

Studies that consider permafrost degradation in wetlands suggest that CH4 could have a share of ~20% in the warming caused by the total permafrost carbon release by 2100. When CH4 emissions from thermokarst lakes are considered, the contribution from permafrost CH4 to the surface warming increases to between 30 and 50%.


Based on the reviewed literature, we report that gradual degradation of the near-surface permafrost under unmitigated emissions scenarios could result in an additional warming of ~0.3 (0.08–0.50) °C by 2100, out of which up to 0.1 °C would be from wetland CH4 emissions. However, these values can be underestimates as the degradation of ice-rich permafrost and subsequent CH4 emissions from thermokarst lakes are not accounted for in the calculations.


Permafrost carbon feedback Methane Thermokarst lakes Climate change 



K. Zickfeld acknowledges support from the National Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program.

Compliance with Ethical Standards

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, et al. Near-term climate change: Projections and predictability. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press; 2013. p. 953–1028.Google Scholar
  2. 2.
    Woo M. Permafrost hydrology. Heidelberg: Springer; 2012.CrossRefGoogle Scholar
  3. 3.
    Kokelj SV, Jorgenson MT. Advances in thermokarst research. Permafr Periglac Process. 2013;24:108–19.CrossRefGoogle Scholar
  4. 4.
    de Grandpré I, Fortier D, Stephani E. Degradation of permafrost beneath a road embankment enhanced by heat advected in groundwater. Can J Earth Sci. 2012;49:953–62.CrossRefGoogle Scholar
  5. 5.
    Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014;11:6573–93.CrossRefGoogle Scholar
  6. 6.
    • Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R. The impact of the permafrost carbon feedback on global climate. Environ Res Lett. 2014;9:85003. Is a recent meta-analysis of all studies on the permafrost carbon feedback published before 2014.Google Scholar
  7. 7.
    Christensen TR, van Huissteden K, Sachs T. Natural terrestrial methane sources in the Arctic. AMAP Assessment 2015: Methane as an Arctic climate forcer. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP); 2015. p. 15–26.Google Scholar
  8. 8.
    •• Schuur EAG, McGuire AD, Grosse G, Harden JW, Hayes DJ, Hugelius G, et al. Climate change and the permafrost carbon feedback. Nature. 2015;520:171–9. Is the most recent comprehensive review on the permafrost carbon feedback.Google Scholar
  9. 9.
    Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al. Carbon and other biogeochemical cycles. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press; 2013. p. 465–570.Google Scholar
  10. 10.
    Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J Clim. 2013;26:5289–314.CrossRefGoogle Scholar
  11. 11.
    •• Schneider Von Deimling T, Grosse G, Strauss J, Schirrmeister L, Morgenstern A, Schaphoff S, et al. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences. 2015;12:3469–88. Is the single study so far based on model projections of permafrost CO 2 and CH 4 emissions with the consideration of future CH 4 emissions from both wetlands and thermokarst lakes.Google Scholar
  12. 12.
    Schneider Von Deimling T, Meinshausen M, Levermann A, Huber V, Frieler K, Lawrence DM, et al. Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences. 2012;9:649–65.CrossRefGoogle Scholar
  13. 13.
    MacDougall AH, Avis CA, Weaver AJ. Significant contribution to climate warming from the permafrost carbon feedback. Nat Geosci. 2012;5:719–21.CrossRefGoogle Scholar
  14. 14.
    Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, et al. Anthropogenic and natural radiative forcing. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press; 2013. p. 659–740.Google Scholar
  15. 15.
    Isaksen ISA, Gauss M, Myhre G, Walter Anthony KM, Ruppel C. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Glob Biogeochem Cycles. 2011;25:GB2002.CrossRefGoogle Scholar
  16. 16.
    Matthews E, Fung I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycles. 1987;1:61–86.CrossRefGoogle Scholar
  17. 17.
    Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin III FS. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature. 2006;443:71–5.CrossRefGoogle Scholar
  18. 18.
    Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience. 2008;58:701–14.CrossRefGoogle Scholar
  19. 19.
    O’Connor FM, Boucher O, Gedney N, Jones CD, Folberth GA, Coppell R, et al. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Review of Geophysics. 2010;48Google Scholar
  20. 20.
    McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr. 2009;79:523–55.CrossRefGoogle Scholar
  21. 21.
    Shakhova N, Semiletov I, Leifer I, Salyuk A, Rekant P, Kosmach D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. Journal of Geophysical Research: Oceans. 2010;C08007.Google Scholar
  22. 22.
    Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol. 2013;19:1325–46.CrossRefGoogle Scholar
  23. 23.
    Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, et al. The global methane budget 2000–2012. Earth System Science Data. 2016;8:697–751.CrossRefGoogle Scholar
  24. 24.
    Burke EJ, Hartley IP, Jones CD. Uncertainties in the global temperature change caused by carbon release from permafrost thawing. Cryosphere. 2012;6:1063–76.CrossRefGoogle Scholar
  25. 25.
    Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G, Kuhry P, et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat Commun. 2016;7:13043.CrossRefGoogle Scholar
  26. 26.
    •• Nauta AL, Heijmans MMPD, Blok D, Limpens J, Elberling B, Gallagher A, et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat Clim Chang. 2015;5:67–70. Summarizes results from a field experiment on the potential rapid transformation of CH 4 sinks into CH 4 sources following change in vegetation cover and thermokarst development.Google Scholar
  27. 27.
    •• Walter Anthony K, Daanen R, Anthony P, Schneider von Deimling T, Ping C-L, Chanton JP, et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat Geosci. 2016;9:679–82. Highlights the proportionality between thawed carbon eroding into thermokarst lakes and CH 4 emissions from these lakes since the middle of the last century based on field observations.Google Scholar
  28. 28.
    Strauss J, Schirrmeister L, Grosse G, Wetterich S, Ulrich M, Herzschuh U, et al. The deep permafrost carbon pool of the yedoma region in Siberia and Alaska. Geophys Res Lett. 2013;40:6165–70.CrossRefGoogle Scholar
  29. 29.
    Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A. Freshwater methane emissions offset the continental carbon sink. Science. 2011;331:50.CrossRefGoogle Scholar
  30. 30.
    Olefeldt D, Turetsky MR, Crill PM, McGuire AD. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob Chang Biol. 2013;19:589–603.CrossRefGoogle Scholar
  31. 31.
    Treat CC, Natali SM, Ernakovich J, Iversen CM, Lupascu M, McGuire AD, et al. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob Chang Biol. 2015;21:2787–803.CrossRefGoogle Scholar
  32. 32.
    Schlesinger WH, Bernhardt ES. Wetland ecosystems. Biogeochemistry: an analysis of global change. 3rd ed. Cambridge, MA, USA: Academic Press; 2013. p. 233–73.Google Scholar
  33. 33.
    Lofton DD, Whalen SC, Hershey AE. Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes. Hydrobiologia. 2014;72:209–22.CrossRefGoogle Scholar
  34. 34.
    Schädel C, K-F Bader M. G Schuur EA, Biasi C, Bracho R, Čapek P, et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils Nature Climate Change. 2016;6:950–3.Google Scholar
  35. 35.
    Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, et al. Three decades of global methane sources and sinks. Nat Geosci. 2013;6:813–23.CrossRefGoogle Scholar
  36. 36.
    Bruhwiler L, Bousquet P, Houweling S, Melton J. Modeling of atmospheric methane using inverse (and forward) approaches. AMAP assessment 2015: methane as an Arctic climate forcer. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP); 2015. p. 77–90.Google Scholar
  37. 37.
    Wik M, Varner R, Walter Anthony K, MacIntyre S, Bastviken D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat Geosci. 2016;9:99–105.Google Scholar
  38. 38.
    Parmentier F-JW, Silyakova A, Biastoch A, Kretschmer K. Natural marine methane sources in the Arctic. AMAP assessment 2015: methane as an Arctic climate forcer. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP); 2015. p. 27–38.Google Scholar
  39. 39.
    Walter Anthony KM, Anthony P, Grosse G, Chanton J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat Geosci. 2012;5:419–26.CrossRefGoogle Scholar
  40. 40.
    Thornton BF, Crill P. Arctic permafrost: microbial lid on subsea methane. Nat Clim Chang. 2015;5:723–4.CrossRefGoogle Scholar
  41. 41.
    Ruppel C. Permafrost-associated gas hydrate: is it really approximately 1% of the global system? Journal of Chemical and Engineering Data. 2015;60:429–36.CrossRefGoogle Scholar
  42. 42.
    Overduin PP, Liebner S, Knoblauch C, Günther F, Wetterich S, Schirrmeister L, et al. Methane oxidation following submarine permafrost degradation: measurements from a central Laptev Sea shelf borehole. Journal of Geophysical Research: Biogeosciences. 2015;120:965–78.Google Scholar
  43. 43.
    Dmitrenko IA, Kirillov SA, Tremblay LB, Kassens H, Anisimov OA, Lavrov SA, et al. Recent changes in shelf hydrography in the Siberian Arctic: potential for subsea permafrost instability. Journal of Geophysical Research: Oceans. 2011;116:C10027.CrossRefGoogle Scholar
  44. 44.
    Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ, Chen G, et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Phil Trans R Soc A. 2015;373Google Scholar
  45. 45.
    Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc Natl Acad Sci U S A. 2011;108:14769–74.CrossRefGoogle Scholar
  46. 46.
    • Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P, Canadell JG, et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim Chang. 2013;119:359–74. Provides the general opinion of expert scientists on a number of questions related to the permafrost carbon feedback as for the last 3 to 4 years.Google Scholar
  47. 47.
    Schaefer K, Zhang T, Bruhwiler L, Barrett AP. Amount and timing of permafrost carbon release in response to climate warming. Tellus B. 2011;63:165–80.Google Scholar
  48. 48.
    • MacDougall AH, Zickfeld K, Knutti R, Matthews HD. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ Res Lett. 2015;10:125003. Is a recent modelling study on the implications of the permafrost carbon feedback on carbon budgets for the 2°C, 2.5°C and 3°C warming targets.Google Scholar
  49. 49.
    Lawrence DM, Koven CD, Swenson SC, Riley WJ, Slater AG. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ Res Lett. 2015;10.Google Scholar
  50. 50.
    Avis CA, Weaver AJ, Meissner KJ. Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nat Geosci. 2011;4:444–8.CrossRefGoogle Scholar
  51. 51.
    McCalley CK, Woodcroft BJ, Hodgkins SB, Wehr RA, Kim E-H, Mondav R, et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature. 2014;514:478–81.CrossRefGoogle Scholar
  52. 52.
    Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, Spahni R, et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences. 2013;10:753–88.CrossRefGoogle Scholar
  53. 53.
    Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci. 2011;4:27–31.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of GeographySimon Fraser UniversityBurnabyCanada

Personalised recommendations