Allergo Journal International

, Volume 23, Issue 6, pp 172–178 | Cite as

Cockroach, tick, storage mite and other arthropod allergies: Where do we stand with molecular allergy diagnostics?

Part 15 of the Series Molecular Allergology
  • Christiane Hilger
  • Annette Kuehn
  • Monika Raulf
  • Thilo Jakob
Review article

Key words

Allergy diagnostics cockroach tick storage mite arthropod 

Abstract

Arthropods form a broad phylum within the animal kingdom, comprising widely varying members such as insects, arachnids, crabs and centipedes. In addition to common allergies to house dust mites or hymenoptera venom, there are also rarer allergies that can be attributed to three major sources of allergens: cockroaches, ticks and storage mites. Other less known allergen sources include spiders, mosquitos, horseflies, red chironomid larvae, silverfish and ladybugs, as well as a variety of storage pests. At present, only extract-based test systems are available for the majority of allergens in IgE-based diagnostics. Molecular characterisation of numerous individual allergens has already been carried out. However, these individual allergens are only available for a small number of allergen sources (e. g. cockroaches and storage mites) in routine diagnostics. Particularly in the case of allergen sources with known high cross-reactivity, the use of marker allergens is believed to improve diagnostics. The currently known individual allergens of the above-mentioned allergy triggers from the arthropod realm are summarized and their potential use in allergy diagnostics discussed.

References

  1. 1.
    Vrtala S, Kleine-Tebbe J. Hausstaubmilbenallergene und ihre Bedeutung. Allergo J 2013;22:546–9CrossRefGoogle Scholar
  2. 2.
    Spillner E, Blank S, Jakob T. Potenzial, Fallstricke und aktueller Status der molekularen Diagnostik am Beispiel der Insektengiftallergie. Allergo J 2012;21:249–56CrossRefGoogle Scholar
  3. 3.
    Pomés A, Arruda LK. Investigating cockroach allergens: aiming to improve diagnosis and treatment of cockroach allergic patients. Methods 2013;66:75–85PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Matsui EC, Wood RA, Rand C, Kanchanaraksa S, Swartz L, Curtin-Brosnan J, Eggleston PA. Cockroach allergen exposure and sensitization in suburban middle-class children with asthma. J Allergy Clin Immunol 2003;112:87–92CrossRefPubMedGoogle Scholar
  5. 5.
    Cohn RD, Arbes SJ Jr, Jaramillo R, Reid LH, Zeldin DC. National prevalence and exposure risk for cockroach allergen in U.S. households. Environ Health Perspect 2006;114:522–6PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Raulf M, Sander I, Gonnissen D, Zahradnik E, Brüning T. Schaben und Co. Die Rolle von Gesundheitsschädlingen als Allergenquelle. Bundesgesundheitsbl 2014;57:585–92CrossRefGoogle Scholar
  7. 7.
    Hirsch T, Stappenbeck C, Neumeister V, Weiland SK, Mutius E von, Keil U, Leupold W. Exposure and allergic sensitization to cockroach allergen in East Germany. Clin Exp Allergy 2000;30:529–37CrossRefPubMedGoogle Scholar
  8. 8.
    Heinzerling LM, Burbach GJ, Edenharter G, Bachert C, Bindslev-Jensen C, Bonini S et al. GA(2)LEN skin test study I: GA(2)LEN harmonization of skin prick testing: novel sensitization patterns for inhalant allergens in Europe. Allergy 2009;64:1498–506CrossRefPubMedGoogle Scholar
  9. 9.
    Sohn MH, Kim KE. The cockroach and allergic diseases. Allergy Asthma Immunol Res 2012;4:264–9PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Barbosa MC, Santos AB, Ferriani VP, Pomés A, Chapman MD, Arruda LK. Efficacy of recombinant allergens for diagnosis of cockroach allergy in patients with asthma and/or rhinitis. Int Arch Allergy Immunol 2013;161: 213–9CrossRefPubMedGoogle Scholar
  11. 11.
    Binder M, Mahler V, Hayek B, Sperr WR, Schöller M, Prozell S et al. Molecular and immunological characterization of arginine kinase from the Indian meal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. J Immunol 2001;167:5470–7CrossRefPubMedGoogle Scholar
  12. 12.
    Wang J, Calatroni A, Visness CM, Sampson HA. Correlation of specific IgE to shrimp with cockroach and dust mite ex-posure and sensitization in an inner-city population. J Allergy Clin Immunol 2011;128:834–7PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Hilger C, Bessot JC, Hutt N, Grigioni F, De Blay F, Pauli G, Hentges F. IgE-mediated anaphylaxis caused by bites of the pigeon tick Argas reflexus: cloning and expression of the major allergen Arg r 1. J Allergy Clin Immunol 2005;115:617–22CrossRefPubMedGoogle Scholar
  14. 14.
    Kleine-Tebbe J, Heinatz A, Gräser I, Dautel H, Hansen GN, Kespohl S et al. Bites of the European pigeon tick (Argas reflexus): Risk of IgE-mediated sensitizations and anaphylactic reactions. J Allergy Clin Immunol 2006;117:190–5CrossRefPubMedGoogle Scholar
  15. 15.
    Commins SP, James HR, Kelly LA, Pochan SL, Workman LJ, Perzanowski MS et al. The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-α-1,3-galactose. J Allergy Clin Immunol 2011;127:1286–93PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Hage-Hamsten M van, Johansson E. Clinical and immunologic aspects of storage mite allergy. Allergy 1998;53:49–53CrossRefPubMedGoogle Scholar
  17. 17.
    FernÄndez-Caldas E, Iraola V, Carnés J. Molecular and biochemical properties of storage mites (except Blomia species). Protein Pept Lett 2007;14:954–9CrossRefPubMedGoogle Scholar
  18. 18.
    Franz JT, Masuch G, Müsken H, Bergmann KC. Mite fauna of German farms. Allergy 1997;52:1233–7CrossRefPubMedGoogle Scholar
  19. 19.
    SÄnchez-Borges M, SuÄrez Chacón R, Capriles-Hulett A, Caballero-Fonseca F, FernÄndez-Caldas E. Anaphylaxis from ingestion of mites: pancake anaphylaxis. J Allergy Clin Immunol 2013;131:31–5CrossRefPubMedGoogle Scholar
  20. 20.
    Simons FE, Peng Z. Mosquito allergy: recombinant mosquito salivary antigens for new diagnostic tests. Int Arch Allergy Immunol 2001;124:403–5CrossRefPubMedGoogle Scholar
  21. 21.
    Ma D, Li Y, Dong J, An S, Wang Y, Liu C et al. Purification and characterization of two new allergens from the salivary glands of the horsefly, Tabanus yao. Allergy 2011;66:101–9CrossRefPubMedGoogle Scholar
  22. 22.
    An S, Chen L, Wei JF, Yang X, Ma D, Xu X et al. Purification and characterization of two new allergens from the venom of Vespa magnifica. PLoS One 2012;7:e31920PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Baur X, Liebers V. Insect hemoglobins (Chi tI) of the diptera family Chironomidae are relevant environmental, occupational, and hobby-related allergens. Int Arch Occup Environ Health 1992;64(3):185–8CrossRefPubMedGoogle Scholar
  24. 24.
    Barletta B, Butteroni C, Puggioni EM, Iacovacci P, Afferni C, Tinghino R et al. Immunological characterization of arecombinant tropomyosin from a new indoor source, Lepisma saccharina. Clin Exp Allergy 2005;35: 483–9CrossRefPubMedGoogle Scholar
  25. 25.
    Nakazawa T, Satinover SM, Naccara L, Goddard L, Dragulev BP, Peters E, Platts-Mills TA. Asian ladybugs (Harmonia axyridis): a new seasonal indoor allergen. J Allergy Clin Immunol 2007;119:421–7CrossRefPubMedGoogle Scholar
  26. 26.
    Wood RA, Togias A, Wildfire J, Visness CM, Matsui EC, Gruchalla R et al. Development of cockroach immunotherapy by the Inner-City Asthma Consortium. J Allergy Clin Immunol 2014;133:846–52PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Urban & Vogel 2014

Authors and Affiliations

  • Christiane Hilger
    • 1
  • Annette Kuehn
    • 1
  • Monika Raulf
    • 2
  • Thilo Jakob
    • 3
  1. 1.Laboratory of Immunogenetics and Allergology Centre for Public Health ResearchLuxembourgLuxembourg
  2. 2.Institute for Prevention and Occupational Medicine of the German Statutory Accident Insurance, Institute of the Ruhr University Bochum (IPA)BochumGermany
  3. 3.Research Group, Department of DermatologyMedical Center — University of FreiburgFreiburgGermany

Personalised recommendations