Allergo Journal International

, Volume 23, Issue 2, pp 60–66 | Cite as

Human heart as a shock organ in anaphylaxis

  • Gianni Marone
  • Arturo Genovese
  • Gilda Varricchi
  • Francescopaolo Granata
Review Article


Anaphylaxis is a potentially fatal, immediate hypersensitivity reaction. Mast cells and basophils, by elaborating vasoactive mediators and cytokines, are the main primary effector cells of anaphylaxis. Mast cells have been identified in human heart between myocardial fibers, perivascularly, in the adventitia, and in the arterial intima. Mast cells isolated from human heart tissue (HHMC) of patients undergoing cardiac transplantation express high affinity immunglobulin E (IgE) receptors (FcεRI), C3a, C5a, and kit receptors (KIT). Anti-IgE, anti-FcεRI, and immunoglobulin superallergens induce in vitro secretion of preformed mediators (histamine, tryptase, chymase, and renin) and the de novo synthesis of cysteinyl leukotriene C4 (LTC4) and prostaglandin D2 (PGD2) from HHMC. Complement is activated and anaphylatoxin forms during anaphylaxis. C5a and C3a cause the in vitro release of histamine and tryptase from HHMC. Therapeutic (general anesthetics, protamine, etc.) and diagnostic agents (radio contrast media, etc.), which can cause anaphylactoid reactions, activate HHMC in vitro. Low concentrations of histamine and cysteinyl leukotrienes given to subjects undergoing diagnostic catheterisation caused significant systemic and coronary hemodynamic effects. These data indicate that human heart mast cells and their mediators play a role in severe anaphylactic reactions.


Anaphylaxis heart histamine leukotrienes mast cells tryptase 



C3a receptor


C5a receptor


Control heart


Coronary blood flow


Coronary vascular resistance


Cysteinyl leukotriene receptor 2


Cysteinyl leukotriene receptor 1


Dilated cardiomyopathy


Eosinophil cationic protein


High affinity immunglobulin E receptors


Mast cells isolated from human heart tissue


Ischemic cardiomyopathy


Immunglobulin E


Cysteinyl leukotriene C4


Cysteinyl leukotriene D4


Left ventricular


Major basic protein


Platelet-activating factor


Prostaglandin D2


Stem cell factor


  1. 1.
    Brockow K, Jofer C, Behrendt H, Ring J. Anaphylaxis in patients with mastocytosis: a study on history, clinical features and risk factors in 120 patients. Allergy 2008; 63: 226–32PubMedCrossRefGoogle Scholar
  2. 2.
    Ring J, Messmer K. Incidence and severity of anaphylactoid reactions to colloid volume substitutes. Lancet 1977; 1: 466–9PubMedCrossRefGoogle Scholar
  3. 3.
    Brockow J, Ring J. Anaphylaxis to radiographic contrast media. Curr Opin Allergy Clin Immunol 2011;11:326–331PubMedCrossRefGoogle Scholar
  4. 4.
    Criep LH, Woehler TR. The heart in human anaphylaxis. Ann Allergy 1971; 29: 399–409PubMedGoogle Scholar
  5. 5.
    Hanashiro PK, Weil MH. Anaphylactic shock in man. Report of two cases with detailed hemodynamic and metabolic studies. Arch Intern Med 1967; 119: 129–40PubMedCrossRefGoogle Scholar
  6. 6.
    Matucci A, Vultaggio A, Fassio F, Rossi O, Maggi E. Heart as the early main target of severe anaphylactic reactions: two case reports. Intern Emerg Med. 2011; 6: 467–9PubMedCrossRefGoogle Scholar
  7. 7.
    Ring J. Anaphylaxis. Chem Immunol Allergy. Basel, Karger, 2010Google Scholar
  8. 8.
    Sampson HA, Mendelson L, Rosen JP. Fatal and near-fatal anaphylactic reactions to food in children and adolescents. N Engl J Med 1992; 327: 380–84PubMedCrossRefGoogle Scholar
  9. 9.
    Smith PL, Kagey-Sobotka A, Bleecker ER, Traystman R, Kaplan AP, Gralnick H et al. Physiologic manifestations of human anaphylaxis. J Clin Invest 1980; 66: 1072–80PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Bernreiter M. Electrocardiogram of patient in anaphylactic shock. JAMA 1959; 170: 1628–30CrossRefGoogle Scholar
  11. 11.
    Booth BH, Patterson R. Electrocardiographic changes during human anaphylaxis. JAMA 1970; 211: 627–31PubMedCrossRefGoogle Scholar
  12. 12.
    Marone G, de Crescenzo G, Patella V, Genovese A. Human cardiac mast cells and their role in severe allergic reactions. In: Marone G, Austen KF, Holgate ST, Kay AB, Lichtenstein LM (Eds.). Asthma and Allergic Diseases. Physiology, Immunopharmacology and Treatment. London: Academic Press; 1998. p. 237CrossRefGoogle Scholar
  13. 13.
    Marone G, de Crescenzo G, Patella V, Granata F, Verga L, Arbustini E et al. Human heart mast cells: immunological characterization in situ and in vitro. In: Marone G, Lichtenstein LM, Galli SJ (Eds.). Mast Cells and Basophils. London: Academic Press; 2000. p. 454Google Scholar
  14. 14.
    Delage C, Irey NS. Anaphylactic deaths: a clinicopathologic study of 43 cases. J Forensic Med 1972; 17: 525–40Google Scholar
  15. 15.
    Bristow MR, Ginsburg R, Kantrowitz NE, Baim DS, Rosenbaum JT. Coronary spasm associated with urticaria: report of a case mimicking anaphylaxis. Clin Cardiol 1982; 5: 238–40PubMedGoogle Scholar
  16. 16.
    Levine HD. Acute myocardial infarction following wasp sting. Am Heart J 1976; 91: 365–74PubMedCrossRefGoogle Scholar
  17. 17.
    Wong S, Greenberger PA, Patterson R. Nearly fatal idiopathic anaphylactic reaction resulting in cardiovascular collapse and myocardial infarction. Chest 1990; 98: 501–03PubMedCrossRefGoogle Scholar
  18. 18.
    Raper RF, Fisher MM. Profound reversible myocardial depression after anaphylaxis. Lancet 1988; 1: 386–88PubMedCrossRefGoogle Scholar
  19. 19.
    Patella V, Marinò I, Lamparter B, Arbustini E, Adt M, Marone G. Human heart mast cells. Isolation, purification, ultrastructure and immunologic characterization. J Immunol 1995; 154: 2855–65PubMedGoogle Scholar
  20. 20.
    Patella V, de Crescenzo G, Ciccarelli A, Marinò I, Adt M, Marone G. Human heart mast cells: a definitive case of mast cell heterogeneity. Int Arch Allergy Immunol 1995; 106: 386–93PubMedCrossRefGoogle Scholar
  21. 21.
    Patella V, de Crescenzo G, Marino I, Genovese A, Adt M, Gleich GJ et al. Eosinophil granule proteins are selective activators of human heart mast cells. Int Arch Allergy Immunol. 1997; 113: 200–2PubMedCrossRefGoogle Scholar
  22. 22.
    Forman MB, Oates JA, Robertson D, Robertson RM, Roberts LJ, Virmani R. Increased adventitial mast cells in a patient with coronary spasm. N Engl J Med 1985; 313: 1138–41PubMedCrossRefGoogle Scholar
  23. 23.
    Kaartinen M, Penttilä A, Kovanen PT. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 1994; 90: 1669–78PubMedCrossRefGoogle Scholar
  24. 24.
    Kamat BR, Galli SJ, Barger AC, Lainey LL, Silverman KJ. Neovascularization and coronary atherosclerotic plaque: cinematographic localization and quantitative histologic analysis. Hum Pathol 1987; 18: 1036–42PubMedCrossRefGoogle Scholar
  25. 25.
    Marone G, Triggiani M, Cirillo R, Vigorito C, Genovese A, Spampinato N et al. Chemical mediators and the human heart. Prog Biochem Pharmacol 1985; 20: 38–54PubMedGoogle Scholar
  26. 26.
    Marone G, de Crescenzo G, Florio G, Granata F, Dente V, Genovese A. Immunological modulation of human cardiac mast cells. Neurochem Res 1999; 24: 1195–202PubMedCrossRefGoogle Scholar
  27. 27.
    Patella V, Marinò I, Arbustini E, Lamparter-Schummert B, Verga L, Adt M et al. Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Circulation 1998; 97: 971–78PubMedCrossRefGoogle Scholar
  28. 28.
    Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 1990; 265: 22348–57PubMedGoogle Scholar
  29. 29.
    Mackins CJ, Kano S, Sevedi N, Schafer U, Reid AC, Machida T et al. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. J Clin Invest 2006; 116: 1063–70PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Silver RB, Reid AC, Mackins CJ, Askwith T, Schaefer U, Herzlinger D et al. Mast cells: a unique source of renin. Proc Natl Acad Sci USA 2004; 101: 13607–12PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hattori Y, Levi R. Effect of PGD2 on cardiac contractility: a negative inotropism secondary to coronary vasoconstriction conceals a primary positive inotropic action. J Pharmacol Exp Ther 1986; 237: 719–24PubMedGoogle Scholar
  32. 32.
    Vigorito C, Giordano A, Cirillo R, Genovese A, Rengo F, Marone G. Metabolic and hemodynamic effects of peptide leukotriene C4 and D4 in man. Int J Clin Lab Res 1997; 27: 178–84PubMedCrossRefGoogle Scholar
  33. 33.
    Triggiani M, Hubbard WC, Chilton FH. Synthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine by an enriched preparation of the human lung mast cell. J Immunol. 1990; 144: 4773–80PubMedGoogle Scholar
  34. 34.
    Vadas P, Gold M, Perelman B, Liss GM, Lack G, Blyth T et al. Platelet-Activating Factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med 2008;358:28–35PubMedCrossRefGoogle Scholar
  35. 35.
    Sasayama S, Matsumori A, Kihara Y. New insights into the pathophysiological role for cytokines in heart failure. Cardiovasc Res 1999; 42: 557–64PubMedCrossRefGoogle Scholar
  36. 36.
    Kaartinen M, Penttilä A, Kovanen PT. Mast cells in rupture-prone areas of human coronary atheromas produce and store TNF-α. Circulation 1996; 94: 2787–92PubMedCrossRefGoogle Scholar
  37. 37.
    Columbo M, Horowitz EM, Botana LM, MacGlashan DW Jr, Bochner BS, Gillis S et al. The human recombinant c-kit receptor ligand, rhSCF, induces mediator release from human cutaneous mast cells and enhances IgE-dependent mediator release from both skin mast cells and peripheral blood basophils. J Immunol 1992; 149: 599–608PubMedGoogle Scholar
  38. 38.
    Genovese A, Bouvet JP, Florio G, Lamparter-Schummert B, Björck L, Marone G. Bacterial immunoglobulin superantigen proteins A and L activate human heart mast cells by interacting with immunoglobulin E. Infect Immun. 2000; 68: 5517–24PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Genovese A, Borgia G, Bouvet JP, Detoraki A, de Paulis A, Piazza M et al. Protein Fv produced during viral hepatitis is an endogenous immunoglobulin superantigen activating human heart mast cells. Int Arch Allergy Immunol. 2003; 132: 336–45PubMedCrossRefGoogle Scholar
  40. 40.
    Hide M, Francis DM, Grattan CEH, Hakimi J, Kochan JP, Greaves MW. Autoantibodies against the high-affinity IgE receptor as a cause of histamine release in chronic urticaria. N Engl J Med 1993; 328: 1599–604PubMedCrossRefGoogle Scholar
  41. 41.
    Marone G, Casolaro V, Paganelli R, Quinti I. IgG anti-IgE from atopic dermatitis induces mediator release from basophils and mast cells. J Invest Dermatol 1989; 93: 246–52PubMedCrossRefGoogle Scholar
  42. 42.
    del Balzo U, Polley MJ, Levi R. Activation of the third complement component (C3) and C3a generation in cardiac anaphylaxis: histamine release and associated inotropic and chronotropic effects. J Pharmacol Exp Ther 1988; 246: 911–16PubMedGoogle Scholar
  43. 43.
    del Balzo U, Levi R, Polley MJ. Cardiac dysfunction caused by purified human C3a anaphylatoxin. Proc Natl Acad Sci USA 1985; 82: 886–90PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    del Balzo U, Polley MJ, Levi R. Cardiac anaphylaxis. Complement activation as an amplification system. Circ Res 1989; 65: 847–57PubMedCrossRefGoogle Scholar
  45. 45.
    de Paulis A, Minopoli G, Arbustini E, de Crescenzo G, Dal Piaz F, Pucci P et al. Stem cell factor is localized in, released from, and cleaved by human mast cells. J Immunol 1999; 163: 2799–808PubMedGoogle Scholar
  46. 46.
    Marone G, Patella V, de Crescenzo G, Granata F, Calabrese C. Immunological interactions between human eosinophils and cardiac mast cells. Chem Immunol. 2000; 76: 118–33PubMedCrossRefGoogle Scholar
  47. 47.
    Patella V, de Crescenzo G, Marinò I, Genovese A, Adt M, Gleich GJ et al. Eosinophil granule proteins activate human heart mast cells. J Immunol. 1996; 157: 1219–25PubMedGoogle Scholar
  48. 48.
    Stellato C, de Crescenzo G, Patella V, Mastronardi P, Mazzarella B, Marone G. Human basophil/mast cell releasability. XI. Heterogeneity of the effects of contrast media on mediator release. J Allergy Clin Immunol 1996; 97: 838–50PubMedCrossRefGoogle Scholar
  49. 49.
    Laroche D, Aimone-Gastin I, Dubois F, Huet H, Gérard P, Vergnaud MC et al. Mechanisms of severe, immediate reactions to iodinated contrast material. Radiology 1998; 209: 183–90PubMedGoogle Scholar
  50. 50.
    Capurro N, Levi R. The heart as a target organ in systemic allergic reactions: comparison of cardiac anaphylaxis in vivo and in vitro. Circ Res 1975; 36: 520–08PubMedCrossRefGoogle Scholar
  51. 51.
    Vigorito C, Russo P, Picotti GB, Chiariello M, Poto S, Marone G. Cardiovascular effects of histamine infusion in man. J Cardiovasc Pharmacol 1983; 5: 531–37PubMedCrossRefGoogle Scholar
  52. 52.
    Vigorito C, Poto S, Picotti GB, Triggiani M, Marone G. Effect of activation of the H1 receptor on coronary hemodynamics in man. Circulation 1986; 73: 1175–82PubMedCrossRefGoogle Scholar
  53. 53.
    Vigorito C, Giordano A, De Caprio L, Vitale DF, Maurea N, Silvestri P et al. Effects of histamine on coronary hemodynamics in man: role of H1 and H2 receptors. J Am Coll Cardiol 1987; 10: 1207–13PubMedCrossRefGoogle Scholar
  54. 54.
    Patterson LJ, Milne B. Latex anaphylaxis causing heart block: role of ranitidine. Can J Anaesth 1999;46:776–78PubMedCrossRefGoogle Scholar
  55. 55.
    Imamura M, Seyedi N, Lander HM, Levi R. Functional identification of histamine H3-receptors in the human heart. Circ Res 1995; 77: 206–10PubMedCrossRefGoogle Scholar
  56. 56.
    Imamura M, Lander HM, Levi R. Activation of histamine H3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia. Comparison with adenosine A1 receptors and α2-adrenoceptors. Circ Res 1996; 78: 475–81PubMedCrossRefGoogle Scholar
  57. 57.
    Silver RB, Poonwasi KS, Seyedi N, Wilson SJ, Lovenberg TW, Levi R. Decreased intracellular calcium mediates the histamine H3-receptor-induced attenuation of norepinephrine exocytosis from cardiac sympathetic nerve endings. Proc Natl Acad Sci USA 2002; 99: 501–06PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Kamohara M, Takasaki J, Matsumoto M, Matsumoto S-I, Saito T, Soga T et al. Functional characterization of cysteinyl leukotriene CysLT2 receptor on human coronary artery smooth muscle cells. Biochem Biophys Res Commun 2001; 287: 1088–92PubMedCrossRefGoogle Scholar
  59. 59.
    Choi IW, Kim YS, Kim DK, Choi JH, Seo KH, Im SY et al. Platelet-activating factor-mediated NF-kappaB dependency of a late anaphylactic reaction. J Exp Med 2003; 198: 145–51PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 2014

Authors and Affiliations

  • Gianni Marone
    • 1
    • 2
    • 3
  • Arturo Genovese
    • 1
    • 2
  • Gilda Varricchi
    • 1
  • Francescopaolo Granata
    • 1
  1. 1.Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
  2. 2.Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
  3. 3.Department of Translational Medical SciencesUniversity of Naples Federico IINapoliItaly

Personalised recommendations