Advertisement

Allergo Journal International

, Volume 23, Issue 1, pp 1–16 | Cite as

Food allergies resulting from immunological cross-reactivity with inhalant allergens

Guidelines from the German Society for Allergology and Clinical Immunology (DGAKI), the German Dermatology Society (DDG), the Association of German Allergologists (AeDA) and the Society for Pediatric Allergology and Environmental Medicine (GPA)
  • Margitta WormEmail author
  • Uta Jappe
  • Jörg Kleine-Tebbe
  • Christiane Schäfer
  • Imke Reese
  • Joachim Saloga
  • Regina Treudler
  • Torsten Zuberbier
  • Anja Waßmann
  • Thomas Fuchs
  • Sabine Dölle
  • Martin Raithel
  • Barbara Ballmer-Weber
  • Bodo Niggemann
  • Thomas Werfel
Guideline

Summary

A large proportion of immunoglobulin E (IgE)-mediated food allergies in older children, adolescents and adults are caused by cross-reactive allergenic structures. Primary sensitization is most commonly to inhalant allergens (e.g. Bet v 1, the major birch pollen allergen). IgE can be activated by various cross-reactive allergens and lead to a variety of clinical manifestations. In general, local and mild — in rare cases also severe and systemic — reactions occur directly after consumption of the food containing the cross-reactive allergen (e. g. plant-derived foods containing proteins of the Bet v 1 family). In clinical practice, sensitization to the primary responsible inhalant and/or food allergen can be detected by skin prick tests and/or in vitro detection of specific IgE. Component-based diagnostic methods can support clinical diagnosis. For individual allergens, these methods may be helpful to estimate the risk of systemic reactions. Confirmation of sensitization by oral provocation testing is important particulary in the case of unclear case history. New, as yet unrecognized allergens can also cause cross-reactions.

The therapeutic potential of specific immunotherapy (SIT) with inhalant allergens and their effect on pollen-associated food allergies is currently unclear: results vary and placebo-controlled trials will be necessary in the future. Pollen allergies are very common. Altogether allergic sensitization to pollen and cross-reactive food allergens are very common in our latitudes. The actual relevance has to be assessed on an individual basis using the clinical information.

Cite this as Worm M, Jappe U, Kleine-Tebbe J, Schäfer C, Reese I, Saloga J, Treudler R, Zuberbier T, Wassmann A, Fuchs T, Dölle S, Raithel M, Ballmer-Weber B, Niggemann B, Werfel T. Food allergies resulting from immunological cross-reactivity with inhalant allergens. Allergo J Int 2014; 23: 1–16 DOI 10.1007/s40629-014-0004-6

Keywords

Food Allergy Grass Pollen Food Allergen House Dust Mite Pollen Allergy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AD

Atopic dermatitis

CCD

Cross-reactive carbohydrate determinants

EAACI

European Academy of Allergy and Clinical Immunology

FEV1

Forced expiratory volume in one second

FVC

Forced vital capacity

IgE

Immunoglobulin E

IgG

Immunoglobulin G

LFS

Latex-fruit syndrome

LTP

Lipid transfer protein

NSAID

Nonsteroidal anti-inflammatory drug

PR-10

Pathogenesis-related protein family 10

SCORAD

Scoring atopic dermatitis

sIgE

Specific immunoglobulin E

SIT

Specific immunotherapy

TLP

Thaumatin-like proteins (PR-5)

VCin

Inspiratory vital capacity

Literatur

  1. 1.
    Kumar R. Epidemiology and risk factors for the development of food allergy. Pediatr Ann 2008; 37: 552–558PubMedGoogle Scholar
  2. 2.
    Lack G. Epidemiologic risks for food allergy. J Allergy Clin Immunol 2008; 121: 1331–1336PubMedGoogle Scholar
  3. 3.
    Ferreira F, Hawranek T, Gruber P, Wopfner N, Mari A. Allergic cross-reactivity: from gene to the clinic. Allergy 2004; 59: 243–267PubMedGoogle Scholar
  4. 4.
    Bonds RS, Midoro-Horiuti T, Goldblum R. A structural basis for food allergy: the role of cross-reactivity. Curr Opin Allergy Clin Immunol 2008; 8: 82–86PubMedGoogle Scholar
  5. 5.
    Hofmann A, Burks AW. Pollen food syndrome: update on the allergens. Curr Allergy Asthma Rep 2008; 8(5): 413–417PubMedGoogle Scholar
  6. 6.
    Jappe U, Petersen A, Raulf-Heimsoth M. Allergische Soforttypreaktionen und kreuzreaktive Kohlenhydratepitope. Allergo J 2013; 22: 25–32Google Scholar
  7. 7.
    Mari A, Ballmer-Weber BK, Vieths S. The oral allergy syndrome: improved diagnostic and treatment methods. Curr Opin Allergy Clin Immunol 2005; 5: 267–273PubMedGoogle Scholar
  8. 8.
    Fernández-Rivas M, Bolhaar S, González-Mancebo E, Asero R, Leeuwen A van, Bohle B et al. Apple allergy across Europe: how allergen sensitization profiles determine the clinical expression of allergies to plant foods. J Allergy Clin Immunol 2006; 118: 481–488PubMedGoogle Scholar
  9. 9.
    Ballmer-Weber BK. Lipid transfer protein as a potential panallergen? Allergy 2002; 57: 873–875PubMedGoogle Scholar
  10. 10.
    Ortolani C, Ballmer-Weber BK, Hansen KS, Ispano M, Wüthrich B, Bindslev-Jensen C et al. Hazelnut allergy: a double-blind, placebo-controlled food challenge multicenter study. J Allergy Clin Immunol 2000; 105: 577–581PubMedGoogle Scholar
  11. 11.
    Worm M, Edenharter G, Ruëff F, Scherer K, Pföhler C, Mahler V et al. Symptom profile and risk factors of anaphylaxis in Central Europe. Allergy 2012; 67: 691–698PubMedGoogle Scholar
  12. 12.
    Hompes S, Köhli A, Nemat K, Scherer K, Lange L, Rueff F et al. Provoking allergens and treatment of anaphylaxis in children and adolescents — data from the anaphylaxis registry of German-speaking countries. Pediatr Allergy Immunol 2011; 22: 568–574PubMedGoogle Scholar
  13. 13.
    Reekers R, Busche M, Wittmann M, Kapp A, Werfel T. Birch pollen-related foods trigger atopic dermatitis in patients with specific cutaneous T-cell responses to birch pollen antigens. J Allergy Clin Immunol 1999; 104: 466–472PubMedGoogle Scholar
  14. 14.
    Breuer K, Wulf A, Constien A, Tetau D, Kapp A, Werfel T. Birch pollen-related food as a provocation factor of allergic symptoms in children with atopic eczema/dermatitis syndrome. Allergy 2004; 59: 988–994PubMedGoogle Scholar
  15. 15.
    Kleine-Tebbe J, Vogel L, Crowell DN, Haustein U, Vieths S. Severe oral allergy syndrome and anaphylactic reactions caused by a Bet v 1-related PR-10 protein in soybean, SAM22. J Allergy Clin Immunol 2002; 110: 797–804PubMedGoogle Scholar
  16. 16.
    Worm M, Hompes S, Fiedler E, Illner A, Zuberbier T, Vieths S. Impact of native, heat-processed and encapsulated hazelnuts on the allergic response in hazelnut-allergic patients. Clin Exp Allergy 2009; 39: 159–166PubMedGoogle Scholar
  17. 17.
    Schiappoli M, Senna G, Dama A, Bonadonna P, Crivellaro M, Passalacqua G. Anaphylaxis due to carrot as ridde food allergen. Allergol Immunopathol (Madr) 2002; 30: 243–244Google Scholar
  18. 18.
    Gómez M, Curiel G, Mendez J, Rodriguez M, Moneo I. Hypersensitivity to carrot associated with specific IgE to grass and tree pollens. Allergy 1996; 51: 425–429PubMedGoogle Scholar
  19. 19.
    Paógan K, Götz-Żbikowska M, Tykwińska M, Napiórkowska K, Bartuzi Z. Celery — cause of severe anaphylactic shock. Postepy Hig Med Dosw (Online) 2012; 66: 132–134Google Scholar
  20. 20.
    Niggemann B, Beyer K, Erdmann E, Fuchs T, Kleine-Tebbe J, Lepp U et al. Standardisierung von oralen Provokationstests bei Verdacht auf Nahrungsmittelallergie. Allergo J 2011; 20: 149–160Google Scholar
  21. 21.
    Henzgen M, Ballmer-Weber BK, Erdmann S, Fuchs T, Kleine-Tebbe J, Lepp U et al. Hauttestungen mit Nahrungsmittelallergenen. Allergologie 2008; 31: 274–280Google Scholar
  22. 22.
    Bolhaar STHP, Weg WE van de, Ree R van, Gonzalez-Mancebo E, Zuidmeer L, Bruijnzeel-Koomen CAFM et al. In vivo assessment with prick-to-prick testing and double-blind, placebo-controlled food challenge of allergenicity of apple cultivars. J Allergy Clin Immunol 2005; 116: 1080–1086PubMedGoogle Scholar
  23. 23.
    Osterballe M, Hansen TK, Mortz CG, Bindslev-Jensen C. The clinical relevance of sensitization to pollen-related fruits and vegetables in unselected pollen-sensitized adults. Allergy 2005; 60: 218–225PubMedGoogle Scholar
  24. 24.
    Asero R, Mistrello G, Roncarolo D, Amato S, Zanoni D, Barocci F et al. Detection of clinical markers of sensitization to profilin in patients allergic to plant-derived foods. J Allergy Clin Immunol 2003; 112: 427–432PubMedGoogle Scholar
  25. 25.
    Dölle S, Lehmann K, Schwarz D, Weckwert W, Scheler C, George E et al. Allergenic activity of different tomato cultivars in tomato allergic subjects. Clin Exp Allergy 2011; 41: 1643–1652PubMedGoogle Scholar
  26. 26.
    Ballmer-Weber BK, Vieths S, Lüttkopf D, Heuschmann P, Wüthrich B. Celery allergy confirmed by double-blind, placebo-controlled food challenge: a clinical study in 32 subjects with a history of adverse reactions to celery root. J Allergy Clin Immunol 2000; 106: 373–378PubMedGoogle Scholar
  27. 27.
    Ballmer-Weber BK, Wüthrich B, Wangorsch A, Fötisch K, Altmann F, Vieths S. Carrot allergy: double-blinded, placebo-controlled food challenge and identification of allergens. J Allergy Clin Immunol 2001; 108: 301–307PubMedGoogle Scholar
  28. 28.
    Jappe U. Diagnostic reagents for type I allergy — what criteria should be applied to validation? Arb Paul Ehrlich Inst Bundesinstitut Impfstoffe Biomed Arzneim Langen Hess 2009; 96: 135–145; discussion 145-6PubMedGoogle Scholar
  29. 29.
    Bruijnzeel-Koomen C, Ortolani C, Aas K, Bindslev-Jensen C, Björkstén B, Moneret-Vautrin D et al. Adverse reactions to food. European Academy of Allergology and Clinical Immunology Subcommittee. Allergy 1995; 50: 623–635PubMedGoogle Scholar
  30. 30.
    Asero R, Ballmer-Weber BK, Beyer K, Conti A, Dubakiene R, Fernandez-Rivas M et al. IgE-mediated food allergy diagnosis: current status and new perspectives. Mol Nutr Food Res 2007; 51: 135–147PubMedGoogle Scholar
  31. 31.
    Fötisch K, Vieths S. N- and O-linked oligosaccharides of allergenic glycoproteins. Glycoconj J 2001; 18: 373–390PubMedGoogle Scholar
  32. 32.
    Mari A. IgE to cross-reactive carbohydrate determinants: analysis of the distribution and appraisal of the in vivo and in vitro reactivity. Int Arch Allergy Immunol 2002; 129: 286–295PubMedGoogle Scholar
  33. 33.
    Mari A, Ooievaar-de Heer P, Scala E, Giani M, Pirrotta L, Zuidmeer L et al. Evaluation by double-blind placebo-controlled oral challenge of the clinical relevance of IgE antibodies against plant glycans. Allergy 2008; 63: 891–896PubMedGoogle Scholar
  34. 34.
    Lüttkopf D, Ballmer-Weber BK, Wüthrich B, Vieths S. Celery allergens in patients with positive double-blind placebo-controlled food challenge. J Allergy Clin Immunol 2000; 106: 390–399PubMedGoogle Scholar
  35. 35.
    Anliker MD, Reindl J, Vieths S, Wüthrich B. Allergy caused by ingestion of persimmon (Diospyros kaki): detection of specific IgE and cross-reactivity to profilin and carbohydrate determinants. J Allergy Clin Immunol 2001; 107: 718–723PubMedGoogle Scholar
  36. 36.
    Foetisch K, Westphal S, Lauer I, Retzek M, Altmann F, Kolarich D et al. Biological activity of IgE specific for cross-reactive carbohydrate determinants. J Allergy Clin Immunol 2003; 111: 889–896PubMedGoogle Scholar
  37. 37.
    Stapel SO, Asero R, Ballmer-Weber BK, Knol EF, Strobel S, Vieths S et al; EAACI Task Force. Testing for IgG4 against foods is not recommended as a diagnostic tool: EAACI Task Force Report. Allergy 2008; 63: 793–796PubMedGoogle Scholar
  38. 38.
    Kleine-Tebbe J, Reese I, Ballmer-Weber B, Beyer K, Erdmann S, Fuchs T et al. Keine Empfehlung für IgG- und IgG4-Bestimmungen gegen Nahrungsmittel. Allergo J 2009; 18: 267–273Google Scholar
  39. 39.
    Skamstrup Hansen K, Vieths S, Vestergaard H, Skov PS, Bindslev-Jensen C, Poulsen LK. Seasonal variation in food allergy to apple. J Chromatogr B Biomed Sci Appl 2001; 756: 19–32PubMedGoogle Scholar
  40. 40.
    Bindslev-Jensen C, Ballmer-Weber BK, Bengtsson U, Blanco C, Ebner C, Hourihane J et al; European Academy of Allergology and Clinical Immunology. Standardization of food challenges in patients with immediate reactions to foods — position paper from the European Academy of Allergology and Clinical Immunology. Allergy 2004; 59: 690–697PubMedGoogle Scholar
  41. 41.
    Wüthrich B, Straumann F. Pollen crossreactivity. Can we establish a link between the in vitro results and the clinical situation? Allergy 1997; 52: 1187–1192PubMedGoogle Scholar
  42. 42.
    Niggemann B, Beyer K, Erdmann S, Fuchs T, Kleine-Tebbe J, Lepp U et al. Standardisierung von oralen Provokationstests bei Verdacht auf Nahrungsmittelallergie. Allergologie 2011; 34: 467–479Google Scholar
  43. 43.
    Ballmer-Weber BK, Hoffmann A, Wüthrich B, Lüttkopf D, Pompei C, Wangorsch A et al. Influence of food processing on the allergenicity of celery: DBPCFC with celery spice and cooked celery in patients with celery allergy. Allergy 2002; 57: 228–235PubMedGoogle Scholar
  44. 44.
    Henzgen M, Vieths S, Reese I, Erdmann S, Fuchs T, Jäger L et al. Nahrungsmittelallergien durch immunologische Kreuzreaktionen. Allergo J 2005; 14: 48–59Google Scholar
  45. 45.
    Werfel T, Aberer W, Augustin M, Biedermann T, Fölster-Holst R, Friedrichs F et al. Neurodermitis S2-Leitlinie. J Dtsch Dermatol Ges 2009; 7: S1–46Google Scholar
  46. 46.
    Lepp U, Ballmer-Weber B, Beyer K, Erdmann S, Fuchs T, Henzgen M et al. Therapiemöglichkeiten bei der IgE-vermittelten Nahrungsmittelallergie. Allergo J 2010; 3: 187–195Google Scholar
  47. 47.
    Asero R. Effects of birch pollen-specific immunotherapy on apple allergy in birch pollen-hypersensitive patients. Clin Exp Allergy 1998; 28: 1368–1373PubMedGoogle Scholar
  48. 48.
    Henzgen M, Rudeschko O, Schlenvoigt G, Herrman D, Franke E. Immunparameter der Apfelallergie unter Hyposensibilisierung mit Birkenpollen. Allergologie 1999; 22: 655–664Google Scholar
  49. 49.
    Bolhaar ST, Tiemessen MM, Zuidmeer L, Leeuwen A van, Hoffmann-Sommergruber K, Bruijnzeel-Koomen CA et al. Efficacy of birch-pollen immunotherapy on cross-reactive food allergy confirmed by skin tests and double-blind food challenges. Clin Exp Allergy 2004; 34: 761–769PubMedGoogle Scholar
  50. 50.
    Bucher X, Pichler WJ, Dahinden CA, Helbling A. Effect of tree pollen specific, subcutaneous immunotherapy on the oral allergy syndrome to apple and hazelnut. Allergy 2004; 59: 1272–1276PubMedGoogle Scholar
  51. 51.
    Mauro M, Russello M, Incorvaia C, Gazzola G, Frati F, Moingeon P et al. Birch-apple syndrome treated with birch pollen immunotherapy. Int Arch Allergy Immunol 2011; 156: 416–422PubMedGoogle Scholar
  52. 52.
    Hansen KS, Khinchi MS, Skov PS, Bindslev-Jensen C, Poulsen LK, Malling HJ. Food allergy to apple and specific immunotherapy with birch pollen. Mol Nutr Food Res 2004; 48: 441–448PubMedGoogle Scholar
  53. 53.
    Hoffen E van, Peeters KA, Neerven RJ van, Tas CW van der, Zuidmeer L, Ieperen-van Dijk AG van et al. Effect of birch pollen-specific immunotherapy on birch pollen-related hazelnut allergy. J Allergy Clin Immunol 2011; 127: 100–101, 101.e1–3PubMedGoogle Scholar
  54. 54.
    Kleine-Tebbe J, Ackermann-Simon J, Hanf G. Die spezifische Immuntherapie (Hyposensibilisierung) mit Allergenen zwischen wissenschaftlichem Fortschritt und medizinischer Versorgungsrealität. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 2012; 55: 343–350Google Scholar
  55. 55.
    Ballmer-Weber BK, Holzhauser T, Scibilia J, Mittag D, Zisa G, Ortolani C et al. Clinical characteristics of soybean allergy in Europe: a double-blind, placebo-controlled food challenge study. J Allergy Clin Immunol 2007; 119: 1489–1496PubMedGoogle Scholar
  56. 56.
    Mittag D, Akkerdaas J, Ballmer-Weber BK, Vogel L, Wensing M, Becker W et al. Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. J Allergy Clin Immunol 2004; 114: 1410–1417PubMedGoogle Scholar
  57. 57.
    Hansen KS, Ballmer-Weber BK, Lüttkopf D, Skov PS, Wüthrich B, Bindslev-Jensen C et al. Roasted hazelnuts — allergenic activity evaluated by double-blind, placebo-controlled food challenge. Allergy 2003; 58: 132–138PubMedGoogle Scholar
  58. 58.
    Bohle B, Zwölfer B, Heratizadeh A, Jahn-Schmid B, Antonia YD, Alter M et al. Cooking birch pollen-related food: divergent consequences for IgE- and T cell-mediated reactivity in vitro and in vivo. J Allergy Clin Immunol 2006; 118: 242–249PubMedGoogle Scholar
  59. 59.
    Breiteneder H, Mills C. Structural bioinformatic approaches to understand cross-reactivity. Mol Nutr Food Res 2006; 50: 628–632PubMedGoogle Scholar
  60. 60.
    Breiteneder H. Protein families: implications for allergen nomenclature, standardisation and specific immunotherapy. Arb Paul Ehrlich Inst Bundesinstitut Impfstoffe Biomed Arzneim Langen Hess 2009; 96: 249–254PubMedGoogle Scholar
  61. 61.
    Egger M, Mutschlechner S, Wopfner N, Gadermaier G, Briza P, Ferreira F. Pollen-food syndromes associated with weed pollinosis: an update from the molecular point of view. Allergy 2006; 61: 461–476PubMedGoogle Scholar
  62. 62.
    Gruber P, Gadermaier G, Bauer R, Weiss R, Wagner S, Leonard R et al. Role of the polypeptide backbone and post-translational modifications in cross-reactivity of Art v 1, the major mugwort pollen allergen. Biol Chem 2009; 390: 445–451PubMedGoogle Scholar
  63. 63.
    Oberhuber C, Ma Y, Wopfner N, Gadermaier G, Dedic A, Niggemann B et al. Prevalence of IgE-binding to Art v 1, Art v 4 and Amb a 1 in mugwort-allergic patients. Int Arch Allergy Immunol 2008; 145: 94–101PubMedGoogle Scholar
  64. 64.
    Guilloux L, Morisset M, Codreanu F, Parisot L, Moneret-Vautrin DA. Peanut allergy diagnosis in the context of grass pollen sensitization for 125 patients: roles of peanut and cross-reactive carbohydrate determinants specific IgE. Int Arch Allergy Immunol 2009; 149: 91–97PubMedGoogle Scholar
  65. 65.
    Andersson K, Lidholm J. Characteristics and immunobiology of grass pollen allergens. Int Arch Allergy Immunol 2003; 130: 87–107PubMedGoogle Scholar
  66. 66.
    Constantin C, Quirce S, Poorafshar M, Touraev A, Niggemann B, Mari A et al. Micro-arrayed wheat seed and grass pollen allergens for component-resolved diagnosis. Allergy 2009; 64: 1030–1037PubMedGoogle Scholar
  67. 67.
    Anderson LB Jr, Dreyfuss EM, Logan J, Johnstone DE, Glaser J. Melon and banana sensitivity coincident with ragweed pollinosis. J Allergy 1970; 45: 310–319PubMedGoogle Scholar
  68. 68.
    Enberg RN, Leickly FE, McCullough J, Bailey J, Ownby DR. Watermelon and ragweed share allergens. J Allergy Clin Immunol 1987; 79: 867–875PubMedGoogle Scholar
  69. 69.
    Rodriguez J, Crespo JF, Burks W, Rivas-Plata C, Fernandez-Anaya S, Vives R et al. Randomized, double-blind, crossover challenge study in 53 subjects reporting adverse reactions to melon (Cucumis melo). J Allergy Clin Immunol 2000; 106: 968–972PubMedGoogle Scholar
  70. 70.
    Rodriguez-Perez R, Crespo JF, Rodríguez J, Salcedo G. Profilin is a relevant melon allergen susceptible to pepsin digestion in patients with oral allergy syndrome. J Allergy Clin Immunol 2003; 111: 634–639PubMedGoogle Scholar
  71. 71.
    Asero R. Ragweed allergy in northern Italy: are patterns of sensitization changing? Eur Ann Allergy Clin Immunol 2012; 44: 157–159PubMedGoogle Scholar
  72. 72.
    Miralles JC, Caravaca F, Guillén F, Lombardero M, Negro JM. Cross-reactivity between Platanus pollen and vegetables. Allergy 2002; 57: 146–149PubMedGoogle Scholar
  73. 73.
    Enrique E, Cisteró-Bahíma A, Bartolomé B, Alonso R, San Miguel-Moncín MM, Bartra J et al. Platanus acerifolia pollinosis and food allergy. Allergy 2002; 57(4): 351–356PubMedGoogle Scholar
  74. 74.
    Asturias JA, Ibarrola I, Amat P, Tella R, Malet A, Cisteró-Bahíma A et al. Purified allergens vs. complete extract in the diagnosis of plane tree pollen allergy. Clin Exp Allergy 2006; 36: 1505–1512PubMedGoogle Scholar
  75. 75.
    Enrique E, Alonso R, Bartolomé B, San Miguel-Moncín M, Bartra J, Fernández-Parra B et al. IgE reactivity to profilin in Platanus acerifolia pollen-sensitized subjects with plant-derived food allergy. J Investig Allergol Clin Immunol 2004; 14: 335–342PubMedGoogle Scholar
  76. 76.
    Fernández-Rivas M, González-Mancebo E, Rodríguez-Pérez R, Benito C, Sánchez-Monge R, Salcedo G et al. Clinically relevant peach allergy is related to peach lipid transfer protein, Pru p 3, in the Spanish population. J Allergy Clin Immunol 2003; 112: 789–795PubMedGoogle Scholar
  77. 77.
    Raulf-Heimsoth M, Rihs HP. Latexallergene: Sensibilisierungsquellen und Einzelallergenprofile erkennen. Allergo J 2011; 20: 241–243Google Scholar
  78. 78.
    Raulf-Heimsoth M, Rihs HP, Rozynek P, Cremer R, Gaspar A, Pires G et al. Quantitative analysis of immunoglobulin E reactivity profiles in patients allergic or sensitized to natural rubber latex (Hevea brasiliensis). J Allergy Clin Immunol 2003; 112: 1002–1007Google Scholar
  79. 79.
    Rihs HP, Dumont B, Rozynek P, Lundberg M, Cremer R, Bruning T et al. Molecular cloning, purification, and IgE-binding of a recombinant class I chitinase from Hevea brasiliensis leaves (rHev b 11.0102). Allergy 2003; 58: 246–251PubMedGoogle Scholar
  80. 80.
    O’Riordain G, Radauer C, Hoffmann-Sommergruber K, Adhami F, Peterbauer CK, Blanco C et al. Cloning and molecular characterization of the Hevea brasiliensis allergen Hev b 11, a class I chitinase. Clin Exp Allergy 2002; 32: 455–462PubMedGoogle Scholar
  81. 81.
    Wagner S, Breiteneder H. Hevea brasiliensis latex allergens: current panel and clinical relevance. Int Arch Allergy Immunol 2005; 136: 90–97PubMedGoogle Scholar
  82. 82.
    Mikkola JH, Alenius H, Kalkkinen N, Turjanmaa K, Palosuo T, Reunala T. Hevein-like protein domains as a possible cause for allergen cross-reactivity between latex and banana. J Allergy Clin Immunol 1998; 102: 1005–1012PubMedGoogle Scholar
  83. 83.
    Ibero M, Castillo MJ, Pineda F. Allergy to cassava: a new allergenic food with cross-reactivity to latex. J Investig Allergol Clin Immunol 2007; 17: 409–412PubMedGoogle Scholar
  84. 84.
    Yagami A, Nakazawa Y, Suzuki K, Matsunaga K. Curry spice allergy associated with pollen-food allergy syndrome and latex fruit-syndrome. J Dermatol 2009; 36: 45–49PubMedGoogle Scholar
  85. 85.
    Brehler R, Theissen U, Mohr C, Luger T. “Latex-fruit syndrome”: frequency of cross-reacting IgE antibodies. Allergy 1997; 52: 404–410PubMedGoogle Scholar
  86. 86.
    Kleine-Tebbe J, Ballmer-Weber BK, Beyer K, Erdmann S, Fuchs T, Henzgen M et al. In-vitro-Diagnostik und molekulare Grundlagen von IgE-vermittelten Nahrungsmittelallergien. Allergo J 2009; 18: 132–146Google Scholar
  87. 87.
    Focke M, Hemmer W, Wöhrl S, Götz M, Jarisch R. Cross-reactivity between Ficus benjamina latex and fig fruit in patients with clinical fig allergy. Clin Exp Allergy 2003; 33: 971–977PubMedGoogle Scholar
  88. 88.
    Hemmer W, Focke M, Götz M, Jarisch R. Sensitization to Ficus benjamina: relationship to natural rubber latex allergy and identification of foods implicated in the Ficus-fruit syndrome. Clin Exp Allergy 2004; 34: 1251–1258PubMedGoogle Scholar
  89. 89.
    Antico A, Zoccatelli G, Marcotulli C, Curioni A. Oral allergy syndrome to fig. Int Arch Allergy Immunol 2003; 131: 138–142PubMedGoogle Scholar
  90. 90.
    Hemmer W, Focke M, Marzban G, Swoboda I, Jarisch R, Laimer M. Identification of Bet v 1-related allergens in fig and other Moraceae fruits. Clin Exp Allergy 2010; 40: 679–687PubMedGoogle Scholar
  91. 91.
    Quiralte J, Palacios L, Rodríguez R, Cárdaba B, Arias de Saavedra JM, Villalba M et al. Modelling diseases: the allergens of Olea europaea pollen. J Investig Allergol Clin Immunol 2007; 17 (Suppl 1): 24–30PubMedGoogle Scholar
  92. 92.
    Martínez A, Asturias JA, Monteseirín J, Moreno V, García-Cubillana A, Hernández M et al. The allergenic relevance of profilin (Ole e 2) from Olea europaea pollen. Allergy 2002; 57 (Suppl 71): 17–23PubMedGoogle Scholar
  93. 93.
    Florido Lopez JF, Quiralte Enriquez J, Arias de Saavedra Alías JM, Saenz de San Pedro B, Martin Casañez E. An allergen from Olea europaea pollen (Ole e 7) is associated with plant-derived food anaphylaxis. Allergy 2002; 57 (Suppl 71): 53–59PubMedGoogle Scholar
  94. 94.
    Huecas S, Villalba M, Rodriguez R. Ole e 9, a major olive pollen allergen, is a 1,3 beta glucanase. Isolation, characterization, amino acid sequence, and tissue specificity. J Biol Chem 2001; 276: 27959–27966PubMedGoogle Scholar
  95. 95.
    Palomares O, Villalba M, Quiralte J, Rodriguez R. Allergenic contribution of the IgE-reactive domains of the 1,3-beta glucanase Ole e 9: diagnostic value in olive pollen allergy. Ann Allergy Asthma Immunol 2006; 97: 61–65PubMedGoogle Scholar
  96. 96.
    Reese G, Ayuso R, Lehrer SB. Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol 1999; 119: 247–258PubMedGoogle Scholar
  97. 97.
    Taylor SL. Molluscan shellfish allergy. Adv Food Nutr Res 2008; 54: 139–177PubMedGoogle Scholar
  98. 98.
    Ayuso R, Reese G, Leong-Kee S, Plante M, Lehrer SB. Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol 2002; 129: 38–48PubMedGoogle Scholar
  99. 99.
    Sidenius KE, Hallas TE, Poulsen LK, Mosbech H. Allergen cross-reactivity between house-dust mites and other invertebrates. Allergy 2001; 56: 723–733PubMedGoogle Scholar
  100. 100.
    Drouet M, Boutet S, Lauret MG, Chène J, Bonneau JC, Le Sellin J et al. [The pork-cat syndrome or crossed allergy between pork meat and cat epithelia (1)]. Allerg Immunol (Paris) 1994; 26: 166–168, 171-2Google Scholar
  101. 101.
    Szépfalusi Z, Ebner C, Pandjaitan R, Orlicek F, Scheiner O, Boltz-Nitulescu G et al. Egg yolk alpha-livetin (chicken serum albumin) is a cross-reactive allergen in the bird-egg syndrome. J Allergy Clin Immunol 1994; 93: 932–942PubMedGoogle Scholar
  102. 102.
    Quirce S, Díez-Gómez ML, Eiras P, Cuevas M, Baz G, Losada E. Inhalant allergy to egg yolk and egg white proteins. Clin Exp Allergy 1998; 28: 478–485PubMedGoogle Scholar
  103. 103.
    Mandallaz MM, Weck AL de, Dahinden CA. Bird-egg syndrome. Cross-reactivity between bird antigens and egg-yolk livetins in IgE-mediated hypersensitivity. Int Arch Allergy Appl Immunol 1988; 87: 143–150PubMedGoogle Scholar
  104. 104.
    Toorenenbergen AW van, Huijskes-Heins MI, Gerth van Wijk R. Different pattern of IgE binding to chicken egg yolk between patients with inhalant allergy to birds and food-allergic children. Int Arch Allergy Immunol 1994; 104: 199–203PubMedGoogle Scholar
  105. 105.
    Hoffmann DR, Guenther DM. Occupational allergy to avian proteins presenting as allergy to ingestion of egg yolk. J Allergy Clin Immunol 1988; 81: 484–487Google Scholar
  106. 106.
    Quirce S, Marañón F, Umpiérrez A, Heras M de las, Fernández-Caldas E, Sastre J. Chicken serum albumin (Gal d 5*) is a partially heat-labile inhalant and food allergen implicated in the bird-egg syndrome. Allergy 2001; 56: 754–762PubMedGoogle Scholar
  107. 107.
    Villas F, Compes E, Fernández-Nieto M, Muñoz MP, Bartolome B, Heras M de las. Bird-egg syndrome caused by Agapornis species (lovebird). J Investig Allergol Clin Immunol 2009; 19: 71–72PubMedGoogle Scholar
  108. 108.
    Cisteró-Bahíma A, Enrique E, San Miguel-Moncín MM, Alonso R, Bartra J, Fernández-Parra B et al. Meat allergy and cross-reactivity with hamster epithelium. Allergy 2003 Feb; 58: 161–162PubMedGoogle Scholar
  109. 109.
    Drouet M, Sabbah A, Le Sellin J, Bonneau JC, Gay G, Dubois-Gosnet C. [Fatal anaphylaxis after eating wild boar meat in a patient with pork-cat syndrome]. Allerg Immunol (Paris) 2001; 33: 163–165Google Scholar
  110. 110.
    San-Juan S, Lezaun A, Caballero ML, Moneo I. Occupational allergy to raw beef due to cross-reactivity with dog epithelium. Allergy 2005; 60: 839–840PubMedGoogle Scholar
  111. 111.
    Hilger C, Kohnen M, Grigioni F, Lehners C, Hentges F. Allergic cross-reactions between cat and pig serum albumin. Study at the protein and DNA levels. Allergy 1997; 52: 179–187PubMedGoogle Scholar
  112. 112.
    Cabañas R, López-Serrano MC, Carreira J, Ventas P, Polo F, Caballero MT et al. Importance of albumin in cross-reactivity among cat, dog and horse allergens. J Investig Allergol Clin Immunol 2000; 10(2): 71–77PubMedGoogle Scholar
  113. 113.
    Hemmer W, Mayer D, Jarisch R. Fleischallergie. Allergologie 2011; 34: 373–387Google Scholar
  114. 114.
    Kinaciyan T, Jahn-Schmid B, Radakovics A, Zwölfer B, Schreiber C, Francis JN et al. Successful sublingual immunotherapy with birch pollen has limited effects on concomitant food allergy to apple and the immune response to the Bet v 1 homolog Mal d 1. J Allergy Clin Immunol 2007; 119: 937–943PubMedGoogle Scholar
  115. 115.
    Kleine-Tebbe J, Bufe A, Ebner C, Eigenmann P, Friedrichs F, Fuch T et al. Specific Immunotherapy (hyposensitization) for IgE-mediated allergic diseases. Allergologie 2012; 33:3–34Google Scholar
  116. 116.
    Díez-Gómez ML, Quirce S, Aragoneses E, Cuevas M. Asthma caused by Ficus benjamina latex: evidence of cross-reactivity with fig fruit and papain. Ann Allergy Asthma Immunol 1998; 80: 24–30PubMedGoogle Scholar
  117. 117.
    Vieths S, Scheurer S, Ballmer-Weber B. Current understanding of cross-reactivity of food allergens and pollen. Ann N Y Acad Sci 2002; 964: 47–68PubMedGoogle Scholar
  118. 118.
    Vanek-Krebitz M, Hoffmann-Sommergruber K, Laimer da Camara Machado M, Susani M, Ebner C, Kraft D et al. Cloning and sequencing of Mal d 1, the major allergen from apple (Malus domestica), and its immunological relationship to Bet v 1, the major birch pollen allergen. Biochem Biophys Res Commun 1995; 214: 538–551PubMedGoogle Scholar
  119. 119.
    Breiteneder H, Ferreira F, Hoffmann-Sommergruber K, Ebner C, Breitenbach M, Rumpold H et al. Four recombinant isoforms of Cor a I, the major allergen of hazel pollen, show different IgE-binding properties. Eur J Biochem 1993; 212: 355–362PubMedGoogle Scholar
  120. 120.
    Breiteneder H, Hoffmann-Sommergruber K, O’Riordain G, Susani M, Ahorn H, Ebner C et al. Molecular characterization of Api g 1, the major allergen of celery (Apium graveolens), and its immunological and structural relationships to a group of 17-kDa tree pollen allergens. Eur J Biochem 1995; 233: 484–489PubMedGoogle Scholar
  121. 121.
    Hoffmann-Sommergruber K, O’Riordain G, Ahorn H, Ebner C, Laimer Da Camara Machado M, Pühringer H et al. Molecular characterization of Dau c 1, the Bet v 1 homologous protein from carrot and its cross-reactivity with Bet v 1 and Api g 1. Clin Exp Allergy 1999; 29: 840–847PubMedGoogle Scholar
  122. 122.
    Scheurer S, Metzner K, Haustein D, Vieths S. Molecular cloning, expression and characterization of Pru a 1, the major cherry allergen. Mol Immunol 1997; 34: 619–629PubMedGoogle Scholar
  123. 123.
    Karamloo F, Scheurer S, Wangorsch A, May S, Haustein D, Vieths S. Pyr c 1, the major allergen from pear (Pyrus communis), is a new member of the Bet v 1 allergen family. J Chromatogr B Biomed Sci Appl 2001; 756: 281–293PubMedGoogle Scholar
  124. 124.
    Oberhuber C, Bulley SM, Ballmer-Weber BK, Bublin M, Gaier S, DeWitt AM et al. Characterization of Bet v 1-related allergens from kiwifruit relevant for patients with combined kiwifruit and birch pollen allergy. Mol Nutr Food Res 2008; 52: S230–240Google Scholar
  125. 125.
    Mittag D, Vieths S, Vogel L, Becker W, Rihs H, Helbling A et al. Soybean allergy in patients allergic to birch pollen: clinical investigation and molecular characterization of allergens. J Allergy Clin Immunol 2004; 113: 148–154PubMedGoogle Scholar
  126. 126.
    Mittag D, Vieths S, Vogel L, Wagner-Loew D, Starke A, Hunziker P et al. Birch pollen-related food allergy to legumes: identification and characterization of the Bet v 1 homologue in mungbean (Vigna radiata), Vig r 1. Clin Exp Allergy 2005; 35: 1049–1055PubMedGoogle Scholar
  127. 127.
    Wüthrich B, Dietschi R. [The celery-carrot-mugwort-condiment syndrome: skin test and RAST results]. Schweiz Med Wochenschr 1985; 115: 258–264PubMedGoogle Scholar
  128. 128.
    Figueroa J, Blanco C, Dumpiérrez AG, Almeida L, Ortega N, Castillo R et al. Mustard allergy confirmed by double-blind placebo-controlled food challenges: clinical features and cross-reactivity with mugwort pollen and plant-derived foods. Allergy 2005; 60: 48–55PubMedGoogle Scholar
  129. 129.
    Pastorello EA, Pravettoni V, Farioli L, Rivolta F, Conti A, Ispano M et al. Hypersensitivity to mugwort (Artemisia vulgaris) in patients with peach allergy is due to a common lipid transfer protein allergen and is often without clinical expression. J Allergy Clin Immunol 2002; 110: 310–317PubMedGoogle Scholar
  130. 130.
    Mari A, Scala E, D’Ambrosio C, Breiteneder H, Wagner S. Latex allergy within a cohort of not-at-risk subjects with respiratory symptoms: prevalence of latex sensitization and assessment of diagnostic tools. Int Arch Allergy Immunol 2007; 143: 135–143PubMedGoogle Scholar
  131. 131.
    Raulf-Heimsoth M, Rihs HP, Rozynek P, Cremer R, Gaspar A, Pires G et al. Quantitative analysis of immunoglobulin E reactivity profiles in patients allergic or sensitized to natural rubber latex (Hevea brasiliensis). Clin Exp Allergy 2007; 37: 1657–1667PubMedGoogle Scholar

Copyright information

© Urban & Vogel 2014

Authors and Affiliations

  • Margitta Worm
    • 1
    Email author
  • Uta Jappe
    • 2
    • 3
  • Jörg Kleine-Tebbe
    • 4
  • Christiane Schäfer
    • 5
  • Imke Reese
    • 6
  • Joachim Saloga
    • 7
  • Regina Treudler
    • 8
  • Torsten Zuberbier
    • 1
  • Anja Waßmann
    • 9
  • Thomas Fuchs
    • 10
  • Sabine Dölle
    • 1
  • Martin Raithel
    • 11
  • Barbara Ballmer-Weber
    • 12
  • Bodo Niggemann
    • 13
  • Thomas Werfel
    • 14
  1. 1.Allergie-Centrum-Charité Klinik für Dermatologie, Allergologie und Venerologie Charité — Universitätsmedizin BerlinBerlinGermany
  2. 2.Klinik für Dermatologie, Allergologie und Venerologie, Universität LübeckGermany
  3. 3.Forschungsgruppe Klinische und Molekulare Allergologie, Forschungszentrum BorstelGermany
  4. 4.Allergie- und Asthma-Zentrum WestendBerlinGermany
  5. 5.Ernährungstherapie, Allergologische SchwerpunktpraxisHamburgGermany
  6. 6.Ernährungsberatung und -therapie, Schwerpunkt AllergologieMünchenGermany
  7. 7.Hautklinik, Universitätsmedizin der Johannes Gutenberg-UniversitätMainzGermany
  8. 8.Klinik für Dermatologie, Venerologie und Allergologie Universität LeipzigGermany
  9. 9.Dermatologisches Ambulatorium Hamburg-AlstertalGermany
  10. 10.Hautklinik, Georg-August-UniversitätGöttingenGermany
  11. 11.Medizinische Klinik für Gastroenterologie, Pneumologie, Endokrinologie, Universitätsklinikum ErlangenGermany
  12. 12.Dermatologische Klinik, Universitätsspital ZürichSwitzerland
  13. 13.Klinik für Pädiatrie, Charité — Universitätsmedizin BerlinGermany
  14. 14.Klinik für Dermatologie, Allergologie und Venerologie, Medizinische Hochschule HannoverGermany

Personalised recommendations