Advertisement

One “OMICS” to integrate them all: ionomics as a result of plant genetics, physiology and evolution

  • Alice Pita-BarbosaEmail author
  • Felipe Klein Ricachenevsky
  • Paulina Maria Flis
Article
  • 14 Downloads

Abstract

The ionome concept, which stands as the inorganic composition of an organism, was introduced 15 years ago. Since then, the ionomics approaches have identified several genes involved in key processes for regulating plants ionome, using different methods and experimental designs. Mutant collections and natural variation in the model plant species Arabidopsis thaliana have been central to the recent discoveries, which are now being the basis to move at a fast pace onto other models such as rice and non-model species, aided by easier, lower-cost of genomics. Ionomics and the study of the ionome also needs integrations of different fields in plant sciences such as plant physiology, genetics, nutrition and evolution, especially plant local adaptation, while relying on methods derived from chemistry to physics, and thus requiring interdisciplinary, versatile teams. Here we review the conceptualization of the ionome as an integrated way of viewing elemental accumulation, and provide examples that highlight the potential of these approaches to shed light onto how plants regulate the ionome. We also review the main methods used in multi-element quantification and visualization in plants. Finally, we indicate what are the likely next steps to move the ionomics field forward.

Keywords

Ionome Elemental profiling ICP Natural variation X-ray fluorescence 

Notes

References

  1. Ardini F, Soggia F, Abelmoschi ML, Magi E, Grotti M (2013) Ionomic profiling of Nicotiana langsdorffii wild-type and mutant genotypes exposed to abiotic stresses. Anal Bioanal Chem 405:665–677.  https://doi.org/10.1007/s00216-012-5997-4 CrossRefPubMedGoogle Scholar
  2. Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martínez M, Pan J, Polya DA, Giri AK (2013) High arsenic in rice is associated with elevated genotoxic effects in humans. Sci Rep 3:2195.  https://doi.org/10.1038/srep02195 CrossRefPubMedGoogle Scholar
  3. Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C, Friml J, Vert G (2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci USA 108:E450–E458.  https://doi.org/10.1073/pnas.1100659108 CrossRefPubMedGoogle Scholar
  4. Baxter I (2015) Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits? J Exp Bot 66:2127–2131.  https://doi.org/10.1093/jxb/erv040 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baxter IR, Vitek O, Lahner B, Muthukumar B, Borghi M, Morrissey J, Guerinot ML, Salt DE (2008) The leaf ionome as a multivariable system to detect a plant’s physiological status. Proc Natl Acad Sci USA 105:12081–12086.  https://doi.org/10.1073/pnas.0804175105 CrossRefPubMedGoogle Scholar
  6. Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, Li Y, Bergelson J, Borevitz JO, Nordborg M, Vitek O, Salt DE (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet 6:e1001193.  https://doi.org/10.1371/journal.pgen.1001193 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baxter IR, Gustin JL, Settles AM, Hoekenga OA (2013) Ionomic characterization of maize kernels in the intermated B73 × Mo17 population. Crop Sci 53:208–220.  https://doi.org/10.2135/cropsci2012.02.0135 CrossRefGoogle Scholar
  8. Baxter IR, Ziegler G, Lahner B, Mickelbart MV, Foley R, Danku J, Armstrong P, Salt DE, Hoekenga OA (2014) Single-kernel ionomic profiles are highly heritable indicators of genetic and environmental influences on elemental accumulation in maize grain (Zea mays). PLoS ONE 9:e87628.  https://doi.org/10.1371/journal.pone.0087628 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berthomieu P, Conéjéro G, Nublat A et al (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na + recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014.  https://doi.org/10.1093/emboj/cdg207 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berzaghi P, Lotto A, Mancinelli M, Benozzo F (2018) Technical note: rapid mineral determination in forages by X-ray fluorescence. J Dairy Sci 101:1–4.  https://doi.org/10.3168/jds.2018-14740 CrossRefGoogle Scholar
  11. Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosinephosphatase explains increased phytochelatin accumulationin arsenate-tolerant Holcus lanatus. Plant J 45:917–929.  https://doi.org/10.1111/j.1365-313X.2005.02651.x CrossRefPubMedGoogle Scholar
  12. Böhm J, Scherzer S, Shabala S, Krol E, Neher E, Mueller TD, Hedrich R (2016) Venus flytrap HKT1-type channel provides for prey sodium uptake into carnivorous plant without conflicting with electrical excitability. Mol Plant 9:428–436.  https://doi.org/10.1016/j.molp.2015.09.017 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brumbarova T, Bauer P, Ivanov R (2015) Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci 20:124–133.  https://doi.org/10.1016/j.tplants.2014.11.004 CrossRefPubMedGoogle Scholar
  14. Busoms S, Paajanen P, Marburger S, Bray S, Huang X-H et al (2018) Fluctuating selection on migrant adaptive sodium transporter alleles in coastal Arabidopsis thaliana. PNAS 115:E12443–E12452.  https://doi.org/10.1073/pnas.1816964115 CrossRefPubMedGoogle Scholar
  15. Campos ACAL, Kruijer W, Alexander R, Akkers RC, Danku J, Salt DE, Aarts MGM (2017) Natural variation in Arabidopsis thaliana reveals shoot ionome, biomass, and gene expression changes as biomarkers for zinc deficiency tolerance. J Exp Bot 68:3643–3656.  https://doi.org/10.1093/jxb/erx191 CrossRefPubMedGoogle Scholar
  16. Capobianco G, Brunetti P, Bonifazi G, Costantino P, Cardarelli M, Serrantia S (2018) The use of micro-energy dispersive X-ray fluorescence spectrometry combined with a multivariate approach to determine element variation and distribution in tobacco seedlings exposed to arsenate. Spectrochim Acta B 147:132–140.  https://doi.org/10.1016/j.sab.2018.05.029 CrossRefGoogle Scholar
  17. Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, Yakubova E, Salt DE (2012) Genome-wide association studies identify Heavy Metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genet 8:e1002923.  https://doi.org/10.1371/journal.pgen.1002923 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chao DY, Dilkes B, Luo H, Douglas A, Yakubova E et al (2013) Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341:658–659.  https://doi.org/10.1126/science.1240561 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE (2014a) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12:e1002009.  https://doi.org/10.1371/journal.pbio.1002009 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chao DY, Baraniecka P, Danku J, Koprivova A, Lahner B, Luo H, Yakubova E, Dilkes B, Kopriva S, Salt DE (2014b) Controlled by naturally occurring isoforms of the key sulfur assimilation enzyme ADENOSINE 59-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis species range. Plant Physiol 166:1593–1608.  https://doi.org/10.1104/pp.114.247825 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen Z, Watanabe T, Shinano T, Okazaki K, Mitsuru O (2009) Rapid characterization of plant mutants with an altered ion-profile: a case study using Lotus japonicus. New Phytol 181:795–801.  https://doi.org/10.1111/j.1469-8137.2008.02730.x CrossRefPubMedGoogle Scholar
  22. Chen ZR, Kuang L, Gao YQ, Wang YL, Salt DE, Chao DY (2018) AtHMA4 drives natural variation in leaf Zn concentration of Arabidopsis thaliana. Front Plant Sci 9:270.  https://doi.org/10.3389/fpls.2018.00270 CrossRefPubMedPubMedCentralGoogle Scholar
  23. D’Amato R, Petrelli M, Proietti P, Onofri A, Regni L, Perugini D, Businelli D (2018) Determination of changes in the concentration and distribution of elements within olive drupes (cv. Leccino) from Se biofortified plants, using laser ablation inductively coupled plasma mass spectrometry. J Sci Food Agric 98:4971–4977.  https://doi.org/10.1002/jsfa.9030 CrossRefPubMedGoogle Scholar
  24. da Rosa Couto R, Comin JJ, Souza M, Ricachenevsky FK, Lana MA, Gatiboni LC, Ceretta CA, Brunetto G (2018) Should heavy metals be monitored in foods derived from soils fertilized with animal waste? Front Plant Sci 9:732CrossRefGoogle Scholar
  25. Danku JM, Lahner B, Yakubova E, Salt DE (2013) Large-scale plant ionomics. Method Mol Biol 953:255–276.  https://doi.org/10.1007/978-1-62703-152-3_17 CrossRefGoogle Scholar
  26. de Carvalho GGA, Moros J, Santos D Jr, Krug FJ, Laserna JJ (2015) Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy. Anal Chim Acta 876:26–38.  https://doi.org/10.1016/j.aca.2015.03.018 CrossRefPubMedGoogle Scholar
  27. Delhaize E, Randall PJ, Wallace PA, Pinkerton A (1993) Screening arabidopsis for mutants in mineral nutrition. In: Barrow NJ (ed) Plant nutrition—from genetic engineering to field practice developments in plant and soil sciences, vol 54. Springer, Dordrecht, pp 139–142CrossRefGoogle Scholar
  28. Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). PNAS 103:5413–5418.  https://doi.org/10.1073/pnas.0509770102 CrossRefPubMedGoogle Scholar
  29. Duan GL, Zhou Y, Tong YP, Mukhopadhyay R, Rosen BP, Zhu YG (2007) A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174:311–321.  https://doi.org/10.1111/j.1469-8137.2007.02009.x CrossRefPubMedGoogle Scholar
  30. Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6:R77.  https://doi.org/10.1186/gb-2005-6-9-r77 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141:1544–1554.  https://doi.org/10.1104/pp.106.084079 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fei T, Dehong L, Fengqun Z, Junhua L, Hua T, Xiangzhong K (2010) Determination of trace elements in Chinese medicinal plants by instrumental neutron activation analysis. J Radioanal Nucl Chem 284:507–511.  https://doi.org/10.1007/s10967-010-0503-y CrossRefGoogle Scholar
  33. Fessenden M (2016) Metabolomics: small molecules, single cells. Nature 540:153–155.  https://doi.org/10.1038/540153a CrossRefPubMedGoogle Scholar
  34. Galler K, Bräutigam K, Große C, Popp J, Neugebauer U (2014) Making a big thing of a small cell—recent advances in single cell analysis. Analyst 139:1237–1273.  https://doi.org/10.1039/c3an01939j CrossRefPubMedGoogle Scholar
  35. Gebert M, Meschenmoser K, Svidová S, Weghuber J, Schweyen R et al (2009) A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg+2 environments. Plant Cell 21:4018–4030.  https://doi.org/10.1105/tpc.109.070557 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gong JM, Waner DA, Horie T, Li SL, Horie R et al (2004) Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:15404–15409.  https://doi.org/10.1073/pnas.0404780101 CrossRefPubMedGoogle Scholar
  37. Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Ariza JL (2014) Characterization of metal profiles in serum during the progression of Alzheimer’s disease. Metallomics 6:292–300.  https://doi.org/10.1039/c3mt00301a CrossRefPubMedGoogle Scholar
  38. Guo R, Shi L, Yan C, Zhong X, Gu F, Liu Q, Xia X, Li H (2017) Ionomic and metabolic responses to neutral salt or alkaline salt stress in maize (Zea mays L.) seedlings. BMC Plant Biol 17:41.  https://doi.org/10.1186/s12870-017-0994-6 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hadsell DL, Hadsell LA, Rijnkels M, Carcamo-Bahena Y, Wei J, Williamson P, Grusak MA (2018) In silico mapping of quantitative trait loci (QTL) regulating the milk ionome in mice identifies a milk iron locus on chromosome 1. Mamm Genome 29:632.  https://doi.org/10.1007/s00335-018-9762-7 CrossRefPubMedGoogle Scholar
  40. Hare DJ, Kysenius K, Paul B, Knauer B, Hutchinson RW, O’Connor C, Fryer F, Hennessey TP, Bush AI, Crouch PJ, Doble PA (2017) Imaging metals in brain tissue by laser ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS). J Vis Exp 119:55042.  https://doi.org/10.3791/55042 CrossRefGoogle Scholar
  41. Hemberg M (2018) Single-cell genomics. Brief Funct Genomics 17:207–208.  https://doi.org/10.1093/bfgp/ely025 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Henderson SW, Dunlevy JD, Wu Y, Blackmore DH, Walker RR, Edwards EJ, Gilliham M, Walker AR (2018) Functional differences in transport properties of natural HKT1;1 variants influence shoot Na+ exclusion in grapevine rootstocks. New Phytol 217:1113–1127.  https://doi.org/10.1111/nph.14888 CrossRefPubMedGoogle Scholar
  43. Hermand V, Julio E, Dorlhac de Borne F, Punshon T, Ricachenevsky FK, Bellec A, Gosti F, Berthomieu P (2014) Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination. Metallomics 6:1427–1440.  https://doi.org/10.1039/c4mt00071d CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta 1823:1521–1530.  https://doi.org/10.1016/j.bbamcr.2012.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Höhner R, Tabatabaei S, Kunz HH, Fittschenb U (2016) A rapid total reflection X-ray fluorescence protocol for micro analyses of ion profiles in Arabidopsis thaliana. Spectrochim Acta B 125:159–167.  https://doi.org/10.1016/j.sab.2016.09.013 CrossRefGoogle Scholar
  46. Hindt MN, Akmakjian GZ, Pivarski KL, Punshon T, Baxter I, Salt DE, Guerinot ML (2017) BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics 9:876–890.  https://doi.org/10.1039/c7mt00152e CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci USA 110:14498–14503.  https://doi.org/10.1073/pnas.1308412110 CrossRefPubMedGoogle Scholar
  48. Huang XY, Salt DE (2016) Plant ionomics: from elemental profiling to environmental adaptation. Mol Plant 9:787–797.  https://doi.org/10.1016/j.molp.2016.05.003 CrossRefPubMedGoogle Scholar
  49. Huang XY, Liu H, Zhu YF, Pinson SRM, Lin HX, Guerinot ML, Zhao FJ, Salt DE (2018) Natural variation in a molybdate transporter controls grain molybdenum concentration in rice. New Phytol in press.  https://doi.org/10.1111/nph.15546
  50. Huff J, Lunn RM, Waalkes MP, Tomatis L, Infante PF (2007) Cadmium-induced cancers in animals and in humans. Int J Occup Env Heal 13:202–212.  https://doi.org/10.1179/oeh.2007.13.2.202 CrossRefGoogle Scholar
  51. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339.  https://doi.org/10.1105/tpc.020487 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jaime-Pérez N, Pineda B, García-Sogo B, Atares A, Athman A, Byrt CS, Olías R, Asins MJ, Gilliham M, Moreno V, Belver A (2016) The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity. Plant, Cell Environ 40:658–671.  https://doi.org/10.1111/pce.12883 CrossRefGoogle Scholar
  53. Kamiya T, Borghi M, Wang P, Danku JM, Kalmbach L, Hosmani PS, Naseer S, Fujiwara T, Geldner N, Salt DE (2015) The MYB36 transcription factor orchestrates Casparian strip formation. Proc Natl Acad Sci USA 112:10533–10538.  https://doi.org/10.1073/pnas.1507691112 CrossRefPubMedGoogle Scholar
  54. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, Follows MJ, Stepanauskas R, Chisholm SW (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–420.  https://doi.org/10.1126/science.1248575 CrossRefPubMedGoogle Scholar
  55. Kondou Y, Manickavelu A, Komatsu K, Arifi M, Kawashima M, Ishii T, Hattori T, Iwata H, Tsujimoto H, Ban T, Matsui M (2016) Analysis of grain elements and identification of best genotypes for Fe and P in Afghan wheat landraces. Breed Sci 66:676–682.  https://doi.org/10.1270/jsbbs.16041 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kongsri S, Srinuttrakul W, Sola P, Busamongkol A (2016) Instrumental neutron activation analysis of selected elements in Thai jasmine rice. Energy Procedia 89:361–365.  https://doi.org/10.1016/j.egypro.2016.05.047 CrossRefGoogle Scholar
  57. Konz T, Migliavacca E, Dayon L, Bowman G, Oikonomidi A, Popp J, Rezzi S (2017) ICP-MS/MS-based ionomics: a validated methodology to investigate the biological variability of the human ionome. J Proteome Res 16:2080–2090.  https://doi.org/10.1021/acs.jproteome.7b00055 CrossRefPubMedGoogle Scholar
  58. Koprivova A, Suter M, Op den Camp R, Brunold C, Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis thaliana. Plant Physiol 122:737–746.  https://doi.org/10.1104/pp.122.3.73 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44CrossRefPubMedGoogle Scholar
  60. Kunz JN, Voronine DV, Lee HWH, Sokolov AV, Scully MO (2017) Rapid detection of drought stress in plants using femtosecond laser-induced breakdown spectroscopy. Opt Express 25:7252.  https://doi.org/10.1364/OE.25.007251 CrossRefGoogle Scholar
  61. Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroeder JI, Salt DE (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21:1215–1221.  https://doi.org/10.1038/nbt865 CrossRefPubMedGoogle Scholar
  62. Lin YF, Aarts MG (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206.  https://doi.org/10.1007/s00018-012-1089-z CrossRefPubMedGoogle Scholar
  63. Lokhande R, Singare P, Andhale M (2010) Study on mineral content of some ayurvedic indian medicinal plants by instrumental neutron activation analysis and AAS techniques. Health Sci J 4:157–168Google Scholar
  64. Loudet O, Saliba-Colombani V, Camilleri C, Calenge F, Gaudon V, Koprivova A, North KA, Kopriva S, Daniel-Vedele F (2007) Natural variation for sulfate content in Arabidopsis thaliana is highly controlled by APR2. Nat Gen 39:896–900.  https://doi.org/10.1038/ng2050 CrossRefGoogle Scholar
  65. Ma SM, Lee SG, Kim EB, Park TJ, Seluanov A, Gorbunova V, Buffenstein R, Seravalli J, Gladyshev VN (2015) Organization of the mammalian ionome according to organ origin, lineage specialization, and longevity. Cell Rep 13:1319–1326.  https://doi.org/10.1016/j.celrep.2015.10.014 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Maathuis FJM (2009) Physiological functions of mineral micronutrients. Curr Opin Plant Biol 12:291–298.  https://doi.org/10.1016/j.pbi.2009.04.003 CrossRefGoogle Scholar
  67. Maguire ME, Cowan JA (2002) Magnesium chemistry and biochemistry. Biometals 15:203–210.  https://doi.org/10.1023/A:1016058229972 CrossRefPubMedGoogle Scholar
  68. Malinouski M, Hasan NM, Zhang Y, Seravalli J, Lin J, Avanesov A, Lutsenko S, Gladyshev VN (2014) Genome-wide RNAi ionomics screen reveals new genes and regulation of human trace element metabolism. Nat Commun 5:3301.  https://doi.org/10.1038/ncomms4301 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Martin MZ, Glasgow DC, Tschaplinski TJ, Tuskan GA, Gunter LE, Engle NL, Wymore AM, Weston DJ (2017) Correlating laser-induced breakdown spectroscopy with neutron activation analysis to determine the elemental concentration in the ionome of the Populus trichocarpa leaf. Spectrochim Acta B 138:46–53.  https://doi.org/10.1016/j.sab.2017.10.008 CrossRefGoogle Scholar
  70. Mascher M, Gerlach N, Gahrtz M, Bucher M, Scholz U, Dresselhaus T (2014) Sequence and ionomic analysis of divergent strains of maize inbred line B73 with an altered growth phenotype. PLoS ONE 9:e96782.  https://doi.org/10.1371/journal.pone.0096782 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Meharg AA, Williams PN, Adomako E et al (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617.  https://doi.org/10.1021/es802612a CrossRefPubMedGoogle Scholar
  72. Menguer PK, Sperotto RA, Ricachenevsky FK (2017) A walk on the wild side: Oryza species as source for rice abiotic stress tolerance. Genet Mol Biol 40:238–252.  https://doi.org/10.1590/1678-4685-GMB-2016-0093 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Menz FC, Seip HM (2004) Acid rain in Europe and the United States: an update. Environ Sci Policy 7:253–265.  https://doi.org/10.1016/j.envsci.2004.05.005 CrossRefGoogle Scholar
  74. Misra BB, Assmann SM, Chen S (2014) Plant single-cell and single-cell-type metabolomics. Trends Plant Sci 19:637–646.  https://doi.org/10.1016/j.tplants.2014.05.005 CrossRefPubMedGoogle Scholar
  75. Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199.  https://doi.org/10.1111/j.1469-8137.2010.03459.x CrossRefPubMedGoogle Scholar
  76. Mondal D, Polya D (2008) Rice in a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: a probabilistic risk assessment. Appl Geochem 23:2987–2998.  https://doi.org/10.1016/j.apgeochem.2008.06.025 CrossRefGoogle Scholar
  77. Muller A, Wenzel M, Strahl H, Grein F, Saaki TN, Kohl B, Siersma T, Bandow JE, Sahl HG, Schneider T, Hamoen LW (2016) Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci USA 113:E7077–E7086.  https://doi.org/10.1073/pnas.1611173113 CrossRefPubMedGoogle Scholar
  78. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681.  https://doi.org/10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedGoogle Scholar
  79. Nachman KE, Punshon T, Rardin L, Signes-Pastor AJ, Murray CJ, Jackson BP, Guerinot ML, Burke TA, Chen CY, Ahsan H, Argos M, Cottingham KL, Cubadda F, Ginsberg GL, Goodale BC, Kurzius-Spencer M, Meharg AA, Miller MD, Nigra AE, Pendergrast CB, Raab A, Reimer K, Scheckel KG, Schwerdtle T, Taylor VF, Tokar EJ, Warczak TM, Karagas MR (2018) Opportunities and challenges for dietary arsenic intervention. Environ Health Perspect 126:84503CrossRefPubMedGoogle Scholar
  80. Niu Y, Chen P, Zhang Y, Wang Z, Hu S, Jin G, Tang C, Guo L (2018) Natural variation among Arabidopsis thaliana accessions in tolerance to high magnesium supply. Sci Rep 8:13640.  https://doi.org/10.1038/s41598-018-31950-0 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647.  https://doi.org/10.1093/jxb/49.321.623 CrossRefGoogle Scholar
  82. Nordberg G, Jin T, Bernard A, Fierens S, Buchet JP, Ye T, Kong Q, Wang H (2002) Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio 31:478–481.  https://doi.org/10.1579/0044-7447-31.6.478 CrossRefPubMedGoogle Scholar
  83. Norton GJ, Islam MR, Duan G, Lei M, Zhu Y, Deacon CM, Moran AC, Islam S, Zhao FJ, Stroud JL, McGrath SP, Feldmann J, Price AH, Meharg AA (2010) Arsenic shoot-grain relationships in field grown rice cultivars. Environ Sci Technol 44:1471–1477.  https://doi.org/10.1021/es902992d CrossRefPubMedGoogle Scholar
  84. NRC - National Research Council (2001) Arsenic in drinking water. National Academy Press, Washington, D.CGoogle Scholar
  85. Nunes LC, Braga JW, de Souza Trevizan LC, de Carvalho GGA, Junior DS, Poppi RJ, Krug FJ (2010) Optimization and validation of a LIBS method for the determination of macro and micronutrients in sugar cane leaves. J Anal At Spectrom 25:1453–1460.  https://doi.org/10.1039/c003620j CrossRefGoogle Scholar
  86. Ohyanagi H, Ebata T, Huang X, Gong H, Fujita M, Mochizuki T, Toyoda A, Fujiyama A, Kaminuma E, Nakamura Y, Feng Q, Wang ZX, Han B, Kurata N (2016) OryzaGenome: genome diversity database of wild Oryza species. Plant Cell Physiol 57:16.  https://doi.org/10.1093/pcp/pcv171 CrossRefGoogle Scholar
  87. Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17.  https://doi.org/10.1111/j.1469-8137.2009.03142.x CrossRefPubMedGoogle Scholar
  88. Persson DP, de Bang TC, Pedas PR, Kutman UB, Cakmak I, Andersen B, Finnie C, Schjoerring JK, Husted S (2016a) Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytol 211:1255–1265.  https://doi.org/10.1111/nph.13989 CrossRefPubMedGoogle Scholar
  89. Persson DP, Chen A, Aarts MG, Salt DE, Schjoerring JK, Husted S (2016b) Multi-element bioimaging of Arabidopsis thaliana roots. Plant Physiol 172:835–847.  https://doi.org/10.1104/pp.16.00770 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Pessôa GC, Lopes Júnior CA, Madrid KC, Arruda MAZ (2017) A quantitative approach for Cd, Cu, Fe and Mn through laser ablation imaging for evaluating the translocation and accumulation of metals in sunflower seeds. Talanta 167:317–324.  https://doi.org/10.1016/j.talanta.2017.02.029 CrossRefPubMedGoogle Scholar
  91. Pinson SRM, Tarpley L, Yan W, Yeater K, Lahner B, Yakubova E, Huang XY, Zhang M, Guerinot ML, Salt DE (2015) Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci 55:294–311.  https://doi.org/10.2135/cropsci2013.10.0656 CrossRefGoogle Scholar
  92. Pita-Barbosa A, Gonçalves EC, Azevedo AA (2015) Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae). Environ Sci Pollut Res 22:11265–11274.  https://doi.org/10.1007/s11356-015-4342-9 CrossRefGoogle Scholar
  93. Pita-Barbosa A, Williams TCR, Loureiro ME (2019) Effects of short-term arsenic exposure in Arabidopsis thaliana: tolerance versus toxicity responses. Biol Plant 63:43–53.  https://doi.org/10.32615/bp.2019.006 CrossRefGoogle Scholar
  94. Pouzar M, Cernohorsky T, Prusova M, Prokopcakova P, Krejcova A (2009) LIBS analysis of crop plants. J Anal At Spectrom 24:953–957.  https://doi.org/10.1039/b903593a CrossRefGoogle Scholar
  95. Pozebon D, Scheffler GL, Dressler VL (2017) Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review. J Anal At Spectrom 32:890–919.  https://doi.org/10.1039/C7JA00026J CrossRefGoogle Scholar
  96. Punshon T, Tappero R, Ricachenevsky FK, Hirschi H (2013) Contrasting calcium localization and speciation in leaves of the Medicago truncatula mutant cod5 analyzed via synchrotron X–ray techniques. Plant J 76:627–633.  https://doi.org/10.1111/tpj.12322 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Punshon T, Carey AM, Ricachenevsky FK, Meharg AA (2018) Elemental distribution in developing rice grains and the effect of flag-leaf arsenate exposure. Environ Exper Bot 149:51–58.  https://doi.org/10.1016/j.envexpbot.2018.02.007 CrossRefGoogle Scholar
  98. Ranulfi AC, Romano RA, Magalhães AB, Ferreira EJ, Villas-Boas PR, Milori DMBP (2017) Evaluation of the nutritional changes caused by huanglongbing (HLB) to citrus plants using laser-induced breakdown spectroscopy. Appl Spectrosc 71:1471–1480.  https://doi.org/10.1177/0003702817701751 CrossRefPubMedGoogle Scholar
  99. Ranulfi AC, Senesi GS, Caetano JB, Meyer MC, Magalhães AB, Villas-Boas PR, Milori DMBP (2018) Nutritional characterization of healthy and Aphelenchoides besseyi infected soybean leaves by laser-induced breakdown spectroscopy (LIBS). Microchem J 141:118–126.  https://doi.org/10.1016/j.microc.2018.05.008 CrossRefGoogle Scholar
  100. Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trend Plant Sci 10:503–509.  https://doi.org/10.1016/j.tplants.2005.08.006 CrossRefGoogle Scholar
  101. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 25:615–618.  https://doi.org/10.1038/nature08842 CrossRefGoogle Scholar
  102. Ricachenevsky FK, Sperotto RA (2014) There and back again, or always there? The evolution of rice combined strategy for Fe uptake. Front Plant Sci 5:189.  https://doi.org/10.3389/fpls.2014.00189 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Ricachenevsky FK, Sperotto RA (2016) Into the Wild: Oryza Species as sources for enhanced nutrient accumulation and metal tolerance in rice. Front Plant Sci 7:974.  https://doi.org/10.3389/fpls.2016.00974 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Ricachenevsky FK, Menguer PK, Sperotto RA, Fett JP (2015) Got to hide your Zn away: molecular control of Zn accumulation and biotechnological applications. Plant Sci 236:1–17.  https://doi.org/10.1016/j.plantsci.2015.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Ricachenevsky FK, de Araújo Junior AT, Fett JP, Sperotto RA (2018a) You shall not pass: root vacuoles as a symplastic checkpoint for metal translocation to shoots and possible application to grain nutritional quality. Front Plant Sci 9:412.  https://doi.org/10.3389/fpls.2018.00412 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Ricachenevsky FK, Punshon T, Lee S, Oliveira BHN, Trenz TS, Maraschin FS, Hindt MN, Danku J, Salt DE, Fett JP, Guerinot ML (2018b) Elemental profiling of rice FOX lines leads to characterization of a new Zn plasma membrane transporter, OsZIP7. Front Plant Sci 9:865.  https://doi.org/10.3389/fpls.2018.00865 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697.  https://doi.org/10.1038/17800 CrossRefPubMedGoogle Scholar
  108. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54.  https://doi.org/10.1039/c3mt00185g CrossRefPubMedGoogle Scholar
  109. Rus A, Baxter I, Muthukumar B, Gustin J, Lahner B, Yakubova E, Salt DE (2006) Natural variants of AtHKT1 enhance Na + accumulation in two wild populations of Arabidopsis. PLoS Genet 2:e210.  https://doi.org/10.1371/journal.pgen.0020210 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733.  https://doi.org/10.1146/annurev.arplant.59.032607.092942 CrossRefPubMedGoogle Scholar
  111. Sánchez-Bermejo E, Castrillo G, del Llano B, Navarro C, Zarco-Fernández S, Martinez-Herrera DJ, Leo-del Puerto Y, Muñoz R, Cámara C, Paz-Ares J, Alonso-Blanco C, Leyva A (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5:4617.  https://doi.org/10.1038/ncomms5617 CrossRefPubMedGoogle Scholar
  112. Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65:6013–6021.  https://doi.org/10.1093/jxb/eru340 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Satbhai S, Setzer C, Freynschlag F, Slovak R, Kerdaffrec E, Busch W (2017) Natural allelic variation of FRO2 modulates Arabidopsis root growth under iron deficiency. Nat Commun 8:15603.  https://doi.org/10.1038/ncomms15603 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Setya A, Murillo M, Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for a novel 5’-adenylylsulfate reductase. PNAS 93:13383–13388.  https://doi.org/10.1073/pnas.93.23.13383 CrossRefPubMedGoogle Scholar
  115. Sevanthi AMV, Kandwal P, Kale PB et al (2018) Whole genome characterization of a few EMS-induced mutants of upland rice variety Nagina 22 reveals a staggeringly high frequency of SNPs which show high phenotypic plasticity towards the wild type. Front Plant Sci 9:1179.  https://doi.org/10.3389/fpls.2018.01179 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao DY, Zhao FJ (2016) OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708–1719.  https://doi.org/10.1104/pp.16.01332 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Shimboa S, Zhang ZW, Watanabe T, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K, Ikeda M (2001) Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Sci Total Environ 281:165–175.  https://doi.org/10.1016/S0048-9697(01)00844-0 CrossRefGoogle Scholar
  118. Shulse CN, Cole BJ, Turco GM, Zhu Y, Brady SM (2018) High-throughput single-cell transcriptome profiling of plant cell types. bioRxiv.  https://doi.org/10.1101/402966 CrossRefGoogle Scholar
  119. Singh JP, Thakur SN (2007) Laser-induced breakdown spectroscopy, 1st edn. Elsevier Science, AmsterdamGoogle Scholar
  120. Singh UM, Sareen P, Sengar RS, Kumar A (2013) Plant ionomics: a newer approach to study mineral transport and its regulation. Acta Physiol Plant 35:2641–2653.  https://doi.org/10.1007/s11738-013-1316-8 CrossRefGoogle Scholar
  121. Singh J, Kumar R, Awasthi S, Singh V, Rai AK (2017) Laser Induced breakdown spectroscopy: a rapid tool for the identification and quantification of minerals in cucurbit seeds. Food Chem 221:1778–1783.  https://doi.org/10.1016/j.foodchem.2016.10.104 CrossRefPubMedGoogle Scholar
  122. Song WY, Park J, Mendoza-Cózatl DG et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. PNAS 107:21187–21192.  https://doi.org/10.1073/pnas.1013964107 CrossRefPubMedGoogle Scholar
  123. Sperotto RA, Ricachenevsky FK, Waldow Vde A, Fett JP (2012) Iron biofortification in rice: it’s a long way to the top. Plant Sci 190:24–39.  https://doi.org/10.1016/j.plantsci.2012.03.004 CrossRefPubMedGoogle Scholar
  124. Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell Environ 35:1948–1957.  https://doi.org/10.1111/j.1365-3040.2012.02527.x CrossRefGoogle Scholar
  125. Tang F, Lao K, Surani MA (2011) Development and applications of single-cell transcriptome analysis. Nat Methods 8:S6–S11.  https://doi.org/10.1038/nmeth.1557 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Tang RJ, Zhao FG, Garcia VJ, Kleist TJ, Yang L et al (2015) Tonoplast CBL-CIPK calcium network regulates magnesium homeostasis in Arabidopsis. PNAS 112:3134–3139.  https://doi.org/10.1073/pnas.1420944112 CrossRefPubMedGoogle Scholar
  127. Thomas CL, Alcock TD, Graham NS, Hayden R, Matterson S, Wilson L, Young SD, Dupuy LX, White PJ, Hammond JP, Danku JM, Salt DE, Sweeney A, Bancroft I, Broadley MR (2016) Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biol 16:214.  https://doi.org/10.1186/s12870-016-0902-5 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. PNAS 107:16500–16505.  https://doi.org/10.1073/pnas.1005396107 CrossRefPubMedGoogle Scholar
  129. Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259.  https://doi.org/10.1104/pp.122.4.1249 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Van Maarschalkerweerd M, Husted S (2015) Recent developments in fast spectroscopy for plant mineral analysis. Front Plant Sci 6:169.  https://doi.org/10.3389/fpls.2015.00169 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Vigani G, Di Silvestre D, Agresta AM, Donnini S, Mauri P, Gehl C, Bittner F, Murgia I (2017) Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus) plants. New Phytol 213:1222–1241.  https://doi.org/10.1111/nph.14214 CrossRefPubMedGoogle Scholar
  132. Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ‘OMICS’. Trends Biotechnol 28:281–290.  https://doi.org/10.1016/j.tibtech.2010.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Wang W, Haberer G, Gundlach H et al (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311–3323.  https://doi.org/10.1038/ncomms4311 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Wang H, Wang B, Wang M, Zheng L, Chen H, Chai Z, Zhao Y, Feng W (2015) Time-resolved ICP-MS analysis of mineral element contents and distribution patterns in single cells. Analyst 140:523–531.  https://doi.org/10.1039/c4an01610f CrossRefPubMedGoogle Scholar
  135. Wang W, Mauleon R, Hu Z et al (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49.  https://doi.org/10.1038/s41586-018-0063-9 CrossRefPubMedGoogle Scholar
  136. Watanabe T, Maejima E, Yoshimura T, Urayama M, Yamauchi A, Owadano M, Okada R, Osaki M, Kanayama Y, Shinano T (2016) The ionomic study of vegetable crops. PLoS ONE 11:e0160273.  https://doi.org/10.1371/journal.pone.0160273 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Wei F, Sakata K, Asakura T, Date Y, Kikuchi J (2018) Systemic homeostasis in metabolome, ionome, and microbiome of wild yellowfn goby in estuarine ecosystem. Sci Rep 8:3478.  https://doi.org/10.1038/s41598-018-20120-x CrossRefPubMedPubMedCentralGoogle Scholar
  138. Wiegleb G, Herr W, Zander B, Bröring U, Brux H, Weyer K (2015) Natural variation of macrophyte vegetation of lowland streams at the regional level. Limnologica 51:53–62.  https://doi.org/10.1016/j.limno.2014.12.005 CrossRefGoogle Scholar
  139. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511.  https://doi.org/10.1093/aob/mcg164 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Wu B, Becker JS (2012) Imaging techniques for elements and element species in plant science. Metallomics 4:403–416.  https://doi.org/10.1039/c2mt00002d CrossRefPubMedGoogle Scholar
  141. Wu B, Zoriy M, Chen Y, Becker JS (2009) Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 78:132–137.  https://doi.org/10.1016/j.talanta.2008.10.061 CrossRefPubMedGoogle Scholar
  142. Wu D, Shen Q, Cai S, Chen ZH, Dai F, Zhang G (2013) Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant Cell Physiol 54:1976–1988.  https://doi.org/10.1093/pcp/pct134 CrossRefPubMedGoogle Scholar
  143. Xu B, Waters S, Byrt CS, Plett D, Tyerman SD, Tester M, Munns R, Hrmova M, Gilliham M (2018) Structural variations in wheat HKT1;5 underpin differences in Na+ transport capacity. Cell Mol Life Sci 75:1133–1144.  https://doi.org/10.1007/s00018-017-2716-5 CrossRefPubMedGoogle Scholar
  144. Yamashita CI, Saiki M, Vasconcellos MBA, Sertie JAA (2005) Characterization of trace elements in Casearia medicinal plant by neutron activation analysis. Appl Radiat Isot 63:841–846.  https://doi.org/10.1016/j.apradiso.2005.05.045 CrossRefPubMedGoogle Scholar
  145. Yan J, Wang P, Yang M, Lian X, Tang Z, Huang CF, Salt DE, Zhao FJ (2016) A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant, Cell Environ 39:1941–1954.  https://doi.org/10.1111/pce.12747 CrossRefGoogle Scholar
  146. Yang M, Lu K, Zhao FJ, Xie W, Ramakrishna P, Wang G, Du Q, Liang L, Sun C, Zhao H, Zhang Z, Liu Z, Tian J, Huang XY, Wang W, Dong H, Hu J, Ming L, Xing Y, Wang G, Xiao J, Salt DE, Lian X (2018) Genome-wide association studies reveal the genetic basis of ionomic variation in rice. Plant Cell 30:2720–2740.  https://doi.org/10.1105/tpc.18.00375 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Yoshida S, Date Y, Akama M, Kikuchi J (2014) Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of Japan. Sci Rep 4:7005.  https://doi.org/10.1038/srep07005 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Young LW, Westcott ND, Attenkofer K, Reaney MJ (2006) A high-throughput determination of metal concentrations in whole intact Arabidopsis thaliana seeds using synchrotron-based X-ray fluorescence spectroscopy. J Synchrotron Radiat 13:304–313.  https://doi.org/10.1107/S0909049506019571 CrossRefPubMedGoogle Scholar
  149. Yu D, Danku JM, Baxter I, Kim S, Vatamaniuk OK, Vitek O, Ouzzani M, Salt DE (2012) High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome. BMC Genomics 13:623.  https://doi.org/10.1186/1471-2164-13-623 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Zhang M, Pinson SR, Tarpley L, Huang XY, Lahner B, Yakubova E, Baxter I, Guerinot ML, Salt DE (2014) Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain. Theor Appl Genet 127:137–165.  https://doi.org/10.1007/s00122-013-2207-5 CrossRefPubMedGoogle Scholar
  151. Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C (2018) A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 217:1161–1176.  https://doi.org/10.1111/nph.14882 CrossRefPubMedGoogle Scholar
  152. Ziegler G, Terauchi A, Becker A, Armstrong P, Hudson K, Baxter I (2013) Ionomic screening of field-grown soybean identifies mutants with altered seed elemental composition. Plant Genome.  https://doi.org/10.3835/plantgenome2012.07.0012 CrossRefGoogle Scholar

Copyright information

© Brazilian Society of Plant Physiology 2019

Authors and Affiliations

  1. 1.Centro de Estudos Costeiros, Limnológicos e MarinhosUniversidade Federal do Rio Grande do SulImbéBrasil
  2. 2.Departamento de Biologia, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrasil
  3. 3.Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamNottinghamUK

Personalised recommendations