Drought escape can provide high grain yields under early drought in lentils

  • David Sánchez-GómezEmail author
  • M. Teresa Cervera
  • Miguel A. Escolano-Tercero
  • M. Dolores Vélez
  • Nuria de María
  • Luis Diaz
  • Raúl Sánchez-Vioque
  • Ismael Aranda
  • M. Ángeles Guevara


In the current context of climate change, evaluation of intraspecific genetic and phenotypic variability of lentil (Lens culinaris Medik) in response to early droughts is fundamental to gain novel insight on the adaptive potential of lentil to water deficit. Here we studied in the field the variability of functional traits, leaf biochemical composition and yield components of three Spanish lentil cultivars submitted to an atypically dry spring. The genetic variability was also studied using amplified fragment length polymorphisms based on 156 polymorphic bands. The vulnerability of the cultivars to future drier scenarios was assessed and we identified potential traits related with lentil’s tolerance to early water deficit. Inter-cultivar variability was found in the response pattern of stomatal conductance to water availability but also in other functional traits and yield components. The small-seeded commercial cultivar PAR had the highest harvest index, grain yield, maximum stomatal conductance, stomatal density and specific leaf area while the lowest root-to-shoot ratio. PAR also had early flowering and the shortest life cycle as well as high leaf polyphenol and carotenoid contents. Therefore, the drought escape strategy exhibited by PAR could be beneficial under dry springs in Mediterranean environments. In contrast, despite the big-seeded non-commercial traditional cultivar MAN displayed drought tolerant traits and high genetic and phenotypic variability, it had the lowest grain yield, suggesting that MAN is less valuable than PAR as a source of early drought resistance for the genetic improvement of lentils.


AFLP analysis Drought tolerance Carotenoids Grain yield Polyphenols Stomatal conductance 



This research was supported by the European Social Fund (ESF) co-funding a grant of the INIA subprogramme DOC-INIA to D.S-G. We thank Dr. Marcelino de los Mozos, manager and curator of the Bank of Plant Germplasm of Cuenca (ESP124) for providing us with the seeds. We also thank Eugenio Salamanca, Amparo Calvo and Rafael Carrascosa for their technical assistance.

Supplementary material

40626_2018_136_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)


  1. Ahmed B, Alam MJ, Hossain MA et al (2016) Study of selected lentil genotypes against drought. Int J Appl Res 2:95–99Google Scholar
  2. Alghamdi SS, Khan AM, Ammar MH et al (2013) Phenological, nutritional and molecular diversity assessment among 35 introduced lentil (Lens culinaris medik.) genotypes grown in Saudi Arabia. Int J Mol Sci 15:277–295. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Araújo SS, Beebe S, Crespi M et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. CRC Crit Rev Plant Sci 34:237–280. CrossRefGoogle Scholar
  4. Barnes JD, Balaguer L, Manrique E et al (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85–100. CrossRefGoogle Scholar
  5. Cervera MT, Remington D, Frigerio J et al (2000) Improved AFLP analysis of tree species. Can J For Res 30:1608–1616CrossRefGoogle Scholar
  6. Chakherchaman SA, Mostafaei H, Imanparast L, Eivazian MR (2009) Evaluation of drought tolerance in lentil advanced genotypes in Ardabil region, Iran. J Food Agric Environ 7:283–288Google Scholar
  7. Chapin FS, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92. CrossRefGoogle Scholar
  8. Cristóbal MD, Herrero B (2016) Genetic characterization of Spanish lentil landraces (Lens culinaris Medik.) by biochemical markers. Indian J Agric Res 50:214–219. CrossRefGoogle Scholar
  9. Cristóbal MD, Pando V, Herrero B (2014) Morphological characterization of lentil (Lens Culinaris Medik.) landraces from Castilla Y León, Spain. Pak J Bot 46:1373–1380Google Scholar
  10. Durán Y, Fratini R, García P, De La Pérez Vega M (2004) An intersubspecific genetic map of Lens. Theor Appl Genet 108:1265–1273. CrossRefPubMedGoogle Scholar
  11. Erskine W (1996) Seed-size effects on lentil (Lens culinaris) yield potential and adaptation to temperature and rainfall in West Asia. J Agric Sci 126:335–341. CrossRefGoogle Scholar
  12. Fan J, McConkey B, Wang H, Janzen H (2016) Root distribution by depth for temperate agricultural crops. Field Crop Res 189:68–74. CrossRefGoogle Scholar
  13. FAO (2010) The contribution of plant genetic resources for food and agriculture to food security and sustainable agricultural development. In: The second report on the state of the world’s plant genetic resources for food and agriculture. Rome, pp. 182–201Google Scholar
  14. FAOSTAT (2017) Food and agriculture organisation of the United Nations statistics division. Accessed 12 Sep 2017
  15. Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 37–61Google Scholar
  16. Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345CrossRefGoogle Scholar
  17. Gallusci P, Dai Z, Génard M et al (2017) Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci 22:610–623. CrossRefPubMedGoogle Scholar
  18. Gedroc JJ, McConnaughay KDM, Coleman JS (1996) Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Funct Ecol 10:44–50. CrossRefGoogle Scholar
  19. Giorgi F, Bi X, Pal J (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071-2100). Clim Dyn 23:839–858. CrossRefGoogle Scholar
  20. González-Bernal MJ, Rubiales D (2016) Las leguminosas grano en la agricultura española y europea. Arbor 192:a311. CrossRefGoogle Scholar
  21. Guiguitant J, Marrou H, Vadez V et al (2017) Relevance of limited-transpiration trait for lentil (Lens culinaris Medik.) in South Asia. Field Crop Res 209:96–107. CrossRefGoogle Scholar
  22. Hepworth C, Doheny-Adams T, Hunt L et al (2015) Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol 208:336–341. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908. CrossRefPubMedGoogle Scholar
  24. Idrissi O, Houasli C, Udupa SM et al (2015) Genetic variability for root and shoot traits in a lentil (Lens culinaris Medik.) recombinant inbred line population and their association with drought tolerance. Euphytica 204:693–709. CrossRefGoogle Scholar
  25. Idrissi O, Udupa MS, De Keyser E et al (2016) Functional genetic diversity analysis and identification of associated simple sequence repeats and amplified fragment length polymorphism markers to drought tolerance in Lentil (Lens culinaris ssp culinaris Medicus) landraces. Plant Mol Biol Report 34:659–680. CrossRefGoogle Scholar
  26. Kumar J, Basu PS, Srivastava E et al (2012) Phenotyping of traits imparting drought tolerance in lentil. Crop Pasture Sci 63:547–554. CrossRefGoogle Scholar
  27. Kumar J, Gupta S, Gupta P et al (2016) Breeding strategies to improve lentil for diverse agro-ecological environments. Indian J Genet Plant Breed 76:530–549. CrossRefGoogle Scholar
  28. Lázaro A, Ruiz M, De La Rosa L, Martín I (2001) Relationships between agro/morphological characters and climatic parameters in Spanish landraces of lentil (Lens culinaris Medik.). Genet Resour Crop Evol 48:239–249. CrossRefGoogle Scholar
  29. Leport L, Turner NC, French RJ et al (1998) Water relations, gas exchange and growth of cool-season grain legumes in a Mediterranean-type environment. Eur J Agron 9:295–303. CrossRefGoogle Scholar
  30. Mikić A, Mihailović V, Ćupina B et al (2011) Achievements in breeding autumn-sown annual legumes for temperate regions with emphasis on the continental Balkans. Euphytica 180:57–67. CrossRefGoogle Scholar
  31. Mishra BK, Srivastava JP, Lal JP, Sheshshayee MS (2016) Physiological and biochemical adaptations in lentil genotypes under drought stress. Russ J Plant Physiol 63:695–708. CrossRefGoogle Scholar
  32. Muscolo A, Sidari M, Anastasi U et al (2013) Effect of PEG-induced drought stress on seed germination of four lentil genotypes. J Plant Interact 9:354–363. CrossRefGoogle Scholar
  33. Muscolo A, Junker A, Klukas C et al (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66:5467–5480. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Oweis T, Hachum A, Pala M (2004) Lentil production under supplemental irrigation in a Mediterranean environment. Agric Water Manag 68:251–265. CrossRefGoogle Scholar
  35. Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:1–15. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  37. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefGoogle Scholar
  38. Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367. CrossRefPubMedGoogle Scholar
  39. R_Core_Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Reich PB, Wright IJ, Cavender-Bares J et al (2003) The evolution of plant functional variation: traits, spectra and strategies. Int J Plant Sci 164:S143–S164CrossRefGoogle Scholar
  41. Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356CrossRefGoogle Scholar
  42. Sack L, Tyree MT, Holbrook NM (2005) Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol 167:403–413. CrossRefPubMedGoogle Scholar
  43. Shrestha R, Turner NC, Siddique KHM et al (2006a) A water deficit during pod development in lentils reduces flower and pod numbers but not seed size. Aust J Agric Res 57:427–438. CrossRefGoogle Scholar
  44. Shrestha R, Turner NC, Siddique KHM, Turner DW (2006b) Physiological and seed yield responses to water deficits among lentil genotypes from diverse origins. Aust J Agric Res 57:903–915. CrossRefGoogle Scholar
  45. Siddique KHM, Johansen C, Turner NC et al (2012) Innovations in agronomy for food legumes. A review. Agron Sustain Dev 32:45–64. CrossRefGoogle Scholar
  46. Silim SN, Saxena MC, Erskine W (1993) Adaptation of lentil to the mediterranean environment. I. Factors affecting yield under drought conditions. Exp Agric 29:9–19CrossRefGoogle Scholar
  47. Singh D, Singh CK, Tomar RSS et al (2016) Molecular assortment of Lens species with different adaptations to drought conditions using SSR markers. PLoS ONE 11:e0147213. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Singh D, Singh CK, Taunk J et al (2017) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18:206. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Slinkard K, Singleton V (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55. CrossRefGoogle Scholar
  50. Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Upadhyaya HD, Dwivedi SL, Ambrose M et al (2011) Legume genetic resources: management, diversity assessment, and utilization in crop improvement. Euphytica 180:27–47. CrossRefGoogle Scholar
  52. Vadez V, Berger JD, Warkentin T et al (2012) Adaptation of grain legumes to climate change: a review. Agron Sustain Dev 32:31–44. CrossRefGoogle Scholar
  53. Voisin AS, Guéguen J, Huyghe C et al (2014) Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agron Sustain Dev 34:361–380. CrossRefGoogle Scholar
  54. Wei T, Simko V (2017) R package “corrplot”: visualization of a correlation matrix (version 0.84).
  55. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313CrossRefGoogle Scholar
  56. Zander P, Amjath-Babu TS, Preissel S et al (2016) Grain legume decline and potential recovery in European agriculture: a review. Agron Sustain Dev 36:26. CrossRefGoogle Scholar

Copyright information

© Brazilian Society of Plant Physiology 2019

Authors and Affiliations

  • David Sánchez-Gómez
    • 1
    Email author
  • M. Teresa Cervera
    • 2
  • Miguel A. Escolano-Tercero
    • 1
  • M. Dolores Vélez
    • 2
  • Nuria de María
    • 2
  • Luis Diaz
    • 2
  • Raúl Sánchez-Vioque
    • 1
    • 3
  • Ismael Aranda
    • 2
    • 4
  • M. Ángeles Guevara
    • 2
  1. 1.Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), Centro de Investigación Agroforestal de Albaladejito (CIAF)CuencaSpain
  2. 2.Centro de Investigación Forestal (CIFOR), Instituto Nacional de Investigaciones Agrarias (INIA)MadridSpain
  3. 3.INCRECYT. Fundación Parque Científico y Tecnológico de Castilla-La Mancha, Centro de EmprendedoresAlbaceteSpain
  4. 4.Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA)Palma de MallorcaSpain

Personalised recommendations