Advertisement

Theoretical and Experimental Plant Physiology

, Volume 30, Issue 4, pp 297–302 | Cite as

Mycorrhization and phosphorus may be an alternative for increasing the production of metabolites in Myracrodruon urundeuva

  • Fábio Sérgio Barbosa da Silva
  • Leonor Costa Maia
Article
  • 19 Downloads

Abstract

‘Aroeira-do-sertão’ (Myracrodruon urundeuva Allemão; Anacardiaceae) is one of the most-used medicinal species by the population of northeastern Brazil and is on the list of plants threatened with extinction. In this context, alternatives that could contribute to reduced extractive use must be designed to establish crops of this species, which have high concentrations of metabolites. Inoculation with arbuscular mycorrhizal fungi (AMF) and the addition of phosphorus (P) to soil increases the production of primary and secondary metabolites in some plants. We tested the hypothesis that the effects of mycorrhization in ‘aroeira’ can be maximized by the application of P. The dry matter and the concentration of metabolites were evaluated. Mycorrhization increased the accumulation of phytomass, which was also favored at the highest dosage of P tested. The production of phenols and total proteins was maximized by mycorrhization only at an intermediate dosage of P. The inoculation did not favor the synthesis of flavonoids and soluble carbohydrates. The production of proanthocyanidins was influenced only by phosphate supplementation. It is concluded that the mycorrhization of seedlings of ‘aroeira-do-sertão’ associated with P fertilization maximizes the production of total phenols and total foliar proteins, making the phytomass more attractive to the herbal industry and resulting in the use of P fertilization.

Keywords

Glomeromycotina Secondary metabolism AMF 

Notes

Acknowledgements

The authors acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (Edital Universal, Proc. No. 473779/2011-0) and for productivity research grants (Proc. Nos. 307749/2015-0 and 307129/2015-2).

References

  1. Albuquerque UP, Andrade LHC (2002) Uso de recursos vegetais da Caatinga: o caso do agreste do estado de Pernambuco (nordeste do Brasil). Interciência 27:336–346Google Scholar
  2. Alves PM, Queiroz LMG, Pereira JV, Pereira MSV (2009) Atividade antimicrobiana, antiaderente e antifúngica in vitro de plantas medicinais brasileiras sobre microrganismos do biofilme dental e cepas do gênero Candida. Rev Soc Bras Med Trop 42:222–224CrossRefPubMedGoogle Scholar
  3. Araújo TAS, Alencar NL, Amorim ELC, Albuquerque UP (2008) A new approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. J Ethnopharmacol 120:72–80CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  5. Brito HO, Noronha EP, França LM, Brito LMO, Prado SA (2008) Análise da composição fitoquímica do extrato etanólico das folhas de Annona squamosa (ATA). Rev Bras Farm 89:180–184Google Scholar
  6. Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas-Navarro R (2010) Root colonization by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria x ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90:1774–1782PubMedGoogle Scholar
  7. Dubois M, Guiles A, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–355CrossRefGoogle Scholar
  8. Freitas MSM, Carvalho AJC, Carneiro RFV (2004) Crescimento e produção de fenóis totais em carqueja [Baccharis trimera (Less.) DC] em resposta a inoculação com fungos micorrízicos arbusculares, na presença e na ausência de adubação mineral. Rev Bras Plantas Med 6:30–34Google Scholar
  9. Geneva MP, Stancheva IV, Boychinova MN, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702PubMedGoogle Scholar
  10. Karagiannidis N, Thomidis T, Lazari D, Panou-Filotheou E, Karagiannidou C (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Sci Hortic 129:329–334CrossRefGoogle Scholar
  11. Kill LHP, Lima PCF (2011) Plano de manejo para espécies da Caatinga ameaçadas de extinção na reserva legal do projeto Salitre. Embrapa Semiárido. Documentos: 243, 55ppGoogle Scholar
  12. Lima CS, Campos MAS, Silva FSB (2015) Mycorhizal fungi (AMF) increase the content of biomolecules in leaves of Inga vera Willd. seedlings. Symbiosis 65:117–123CrossRefGoogle Scholar
  13. Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC (2015) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25:345–357CrossRefPubMedGoogle Scholar
  14. Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751PubMedGoogle Scholar
  15. Monteiro JM, Albuquerque UP, Araújo EL (2005) Taninos: uma abordagem da química à ecologia. Quím. Nova 28:892–896CrossRefGoogle Scholar
  16. Monteiro JM, Albuquerque UP, Lins Neto EMF, Araújo EL, Albuquerque MM, Amorim ELC (2006) The effects of seasonal climate changes in the Caatinga on tannin levels in Myracrodruon urundeuva (Engl.) Fr. All. and Anadenanthera colubrine (Vell.) Brenan. Braz J Pharmacogn 16:338–344CrossRefGoogle Scholar
  17. Monteiro JM, Araújo EL, Amorim ELC, Albuquerque UP (2012) Valuation of the Aroeira (Myracrodruon urundeuva Allemão): perspectives on conservation. Acta Bot Bras 26:125–132CrossRefGoogle Scholar
  18. Oliveira AS, Morais MLT, Buzti S (2002) Aspectos nutricionais da variação genética em progênies de Myracrodruon urundeuva Fr. All. sob diferentes condições de cultivo. Floresta 29:3–14Google Scholar
  19. Oliveira MS, Campos MAS, Albuquerque UP, Silva FSB (2013) Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Ind Crop Prod 50:244–247CrossRefGoogle Scholar
  20. Oliveira MS, Campos MAS, Silva FSB (2015) Arbuscular mycorrhizal fungi and vermicompost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. J Sci Food Agric 95:522–528CrossRefPubMedGoogle Scholar
  21. Pedone-Bonfim MVL, Lins MA, Coelho IR, Santana A, Silva FSB, Maia LC (2013) Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. J Sci Food Agric 93:1479–1484CrossRefPubMedGoogle Scholar
  22. Pedone-Bonfim MVL, Silva FSB, Maia LC (2015) Production of secondary metabolites by mycorrhizal plants with medicinal or nutritional potential. Acta Physiol Plantarum 37:27–33CrossRefGoogle Scholar
  23. Ponce MA, Bompadre MJ, Scervino JM, Ocampo JÁ, Chaneton EJ, Godeas AM (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye Grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253CrossRefGoogle Scholar
  24. Queiroz CRAA, Morais SAL, Nascimento EA (2002) Caracterização dos taninos da aroeira-preta (Myracrodruon urundeuva). Rev Árvore 26:485–492CrossRefGoogle Scholar
  25. Santos SC, Mello JCP (2007) Taninos. In: Schenkel CMO, Gosmann EP, Mell G, Mentz JCP, Petrovick LA, Simões PR (eds) Farmacognosia: da planta ao medicamento. UFRGS, Porto Alegre, pp 615–656Google Scholar
  26. Silva ACO, Albuquerque UP (2005) Woody medicinal plants of the caatinga in the state of Pernambuco (Northeast Brasil). Acta Bot Bras 19:17–26CrossRefGoogle Scholar
  27. Silva FA, Silva FSB (2017) Is the application of arbuscular mycorrhizal fungi an alternative to increase foliar phenolic compounds in seedlings of Mimosa tenuiflora Wild) Poir., Mimosoideae? Braz J Bot 40:361–365CrossRefGoogle Scholar
  28. Silva FA, Ferreira MRA, Soares LAL, Sampaio EVSB, Silva FSB, Maia LC (2014a) Arbuscular mycorrhizal fungi increase gallic acid production in leaves of field grown Libidibia ferrea (Mart. ex. Tul.) L. P. Queiroz. J Med Pl Res 8:1110–1115CrossRefGoogle Scholar
  29. Silva LG, Martins LMV, Silva FSB (2014b) Arbuscular mycorrhizal symbiosis in the maximization of the concentration of foliar biomolecules in pomegranate (Punica granatum L.) seedlings. J Med Pl Res 8:953–957CrossRefGoogle Scholar
  30. Souza SMC, Aquino LCM, Milach AC Jr, Bandeira MAM, Nobre MEP, Viana GSB (2007) Antiinflammatory and antiulcer properties of tannins from Myracrodruon urundeuva Allemão (Anacardiaceae) in rodents. Phytother Res 21:220–225CrossRefPubMedGoogle Scholar
  31. Tawaraya K, Hirose R, Wagatsuma T (2012) Inoculation of arbuscular mycorrhizal fungi can substancially reduce phoshate fertilizer application to Allium fistulosum L. and achieve marketable yield under field conditions. Biol Fertil Soils 48:839–843CrossRefGoogle Scholar
  32. Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297CrossRefGoogle Scholar
  33. Viana GSB, Bandeira MAM, Matos FJA (2003) Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva Allemão. Phytomedicine 10:189–195CrossRefPubMedGoogle Scholar
  34. Zimare SB, Borde MY, Jite PK, Malpathak NP (2013) Effect of AM fungi (Gf, Gm) on biomass and gymnemic content of Gymnema sylvestre (Retz.) R. Br. ex Sm. Proc Natl Acad Sci India Sect B: Biol Sci 83:439–445CrossRefGoogle Scholar
  35. Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156CrossRefPubMedGoogle Scholar

Copyright information

© Brazilian Society of Plant Physiology 2018

Authors and Affiliations

  • Fábio Sérgio Barbosa da Silva
    • 1
  • Leonor Costa Maia
    • 2
  1. 1.Laboratório de Análises, Pesquisas e Estudos em Micorrizas, Centro de Pesquisas do Instituto de Ciências Biológicas/Universidade de Pernambuco, Programa de Pós-Graduação em Biologia Celular e Molecular AplicadaInstituto de Ciências Biológicas – ICB/UPERecifeBrazil
  2. 2.Departamento de Micologia, Programa de Pós-Graduação em Biologia de FungosUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations