DIMBOA levels in hexaploid Brazilian wheat are not associated with antibiosis against the cereal aphids Rhopalosiphum padi and Sitobion avenae

  • Jorge F. PereiraEmail author
  • André L. F. Sarria
  • Stephen J. Powers
  • Gudbjorg I. Aradottir
  • John C. Caulfield
  • Janet Martin
  • Lesley E. Smart
  • John A. Pickett
  • Michael A. Birkett
  • Paulo R. V. S. Pereira


The objective of this study was to evaluate the natural levels of the plant defence compound DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) in young leaves of eight hexaploid Brazilian wheat genotypes and the impact of the genotypes upon development of cereal aphids, Rhopalosiphum padi and Sitobion avenae. HPLC analysis revealed that the DIMBOA levels varied from 5.376 (in BRS Guabiju) to 30.651 mmol kg FW−1 (in BRS Timbaúva) with two genotypes outperforming Solstice, a UK variety used as reference. Bioassays were conducted to evaluate the development and fecundity of both aphids when grown on the wheat genotypes. Although BRS Guabiju and BRS Timbaúva were among the genotypes showing the highest susceptibility and resistance, respectively, against both aphid species, no correlation could be found between DIMBOA levels and antibiosis effects. The cultivar BRS 327 was among the genotypes showing lower intrinsic rate of population increase for the two aphid species. Elucidating the role of secondary metabolites in plant resistance to aphids and the characterization of the genotypes that allowed reduced development of R. padi and S. avenae are important steps to achieve a better natural resistance in hexaploid Brazilian wheat.


Aphid development HPLC Hydroxamic acids Plant resistance Triticum aestivum 



We are thankful for the financial support of Rothamsted International Fellowship Scheme, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—process number 211732/2013-3, Embrapa (Empresa Brasileira de Pesquisa Agropecuária) and Biotechnology and Biological Sciences Research Council (BBSRC) of the United Kingdom (BB/L02652X/1). We also thank Dr Keith Chamberlain from Rothamsted Research for helping with the HPLC analysis and Dr Douglas Lau from Embrapa Trigo for helpful discussions.

Supplementary material

40626_2017_84_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1328 kb)


  1. Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L, Glauser G, Erb M, Flors V, Frey M, Ton J (2011) Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol 157:317–327CrossRefPubMedPubMedCentralGoogle Scholar
  2. Argandoña VH, Luza LC, Niemeyer HM, Corcuera LJ (1980) Role of hydroxamic acids in the resistance of cereals to aphids. Phytochemistry 19:1665–1668CrossRefGoogle Scholar
  3. Baumeler A, Hesse M, Werner C (2000) Benzoxazinoids-cyclic hydroxamic acids, lactams and their corresponding glucosides in the genus Aphelandra (Acanthaceae). Phytochemistry 53:213–222CrossRefPubMedGoogle Scholar
  4. BCC Research (2017) Global markets for biopesticides. Report Code CHM029FGoogle Scholar
  5. Berzonsky WA, Ding H, Haley SD, Lamb RJ, McKenzie RIH, Ohm HW, Patterson FL, Peairs FB, Porter DR, Ratcliffe RH, Shanower TG (2003) Breeding wheat for resistance to insects. Plant Breed Rev 22:221–296Google Scholar
  6. Bohidar K, Wratten SD, Niemeyer HM (1986) Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Ann App Biol 109:193–198CrossRefGoogle Scholar
  7. Bravo HR, Copaja SV (2002) Contents and morphological distribution of 2,4-dihydroxy-1,4-benzoxazin-3-one and 2-benzoxazolinone in Acanthus mollis in relation to protection from larvae of Pseudaletia impuncta. Ann Appl Biol 140:129–132CrossRefGoogle Scholar
  8. Cao HH, Pan MZ, Liu HR, Wang SH, Liu TX (2015) Antibiosis and tolerance but not antixenosis to the grain aphid, Sitobion avenae (Hemiptera:Aphididae), are essential mechanisms of resistance in a wheat cultivar. Bull Entomol Res 105:448–455CrossRefPubMedGoogle Scholar
  9. Castañeda LE, Figueroa CC, Bacigalupe LD, Nespolo RF (2010) Effects of wing polyphenism, aphid genotype and host plant chemistry on energy metabolism of the grain aphid, Sitobion avenae. J Insect Physiol 56:1920–1924CrossRefPubMedGoogle Scholar
  10. Castro AM, Vasicek A, Manifiesto M, Giménez O, Tacaliti MS, Dobrovolskaya O, Röder MS, Snape JW, Börner A (2005) Mapping antixenosis genes on chromosome 6A of wheat to greenbug and to a new biotype of Russian wheat aphid. Plant Breed 124:229–233CrossRefGoogle Scholar
  11. Cezare DG, Schons J, Lau D (2011) Análise da resistência/tolerância da cultivar de trigo BRS Timbaúva ao Barley yellow dwarf virus: PAV. Trop Plant Pathol 36:249–255Google Scholar
  12. Dogimont C, Bendahmane A, Chovelon V, Boissot N (2010) Host plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations. CR Biol 333:566–573CrossRefGoogle Scholar
  13. Elek H, Smart L, Martin J, Ahmad S, Gordon-Weeks R, Welham S, Nádasy M, Pickett JA, Werner CP (2013a) The potential of hydroxamic acids in tetraploid and hexaploid wheat varieties as resistance factors against the bird-cherry oat aphid, Rhopalosiphum padi. Ann Appl Biol 162:100–109CrossRefGoogle Scholar
  14. Elek H, Smart L, Martin J, Ahmad S, Gordon-Weeks R, Anda A, Welham S, Werner P, Pickett J (2013b) Hydroxamic acids in Aegilops species and effects on Rhopalosiphum padi behaviour and fecundity. Bull Insectol 66:213–220Google Scholar
  15. Elek H, Smart L, Ahmad S, Anda A, Werner C, Pickett J (2014) A comparison of the levels of hydroxamic acids in Aegilops speltoides and a hexaploid wheat and effects on Rhopalosiphum padi behaviour and fecundity. Acta Biol Hung 65:38–46CrossRefPubMedGoogle Scholar
  16. Figueroa CC, Loayza-Muro R, Niemeyer HM (2002) Temporal variation of RAPD-PCR phenotype composition of the grain aphid Sitobion avenae (Hemiptera:Aphididae) on wheat: the role of hydroxamic acids. Bull Entomol Res 92:25–33PubMedGoogle Scholar
  17. Figueroa CC, Simon J, Gallic J, Prunier-Leterme N, Briones LM, Dedryver C, Niemeyer HM (2004) Effect of host defense chemicals on clonal distribution and performance of different genotypes of the cereal aphid Sitobion avenae. J Chem Ecol 30:2515–2525CrossRefPubMedGoogle Scholar
  18. Givovich A, Niemeyer HM (1991) Hydroxamic acids affecting barley yellow dwarf virus transmission by the aphid Rhopalosiphum padi. Entomol Exp Appl 59:79–85CrossRefGoogle Scholar
  19. Givovich A, Niemeyer HM (1994) Effect of hydroxamic acids on feeding behavior and performance of cereal aphids on wheat. Eur J Entomol 91:371–374Google Scholar
  20. Givovich A, Sandström J, Niemeyer HM, Pettersson J (1994) Presence of a hydroxamic acid glucoside in wheat phloem sap, and its consequences for the performance of Rhopalosiphum padi (L.) (Homoptera:aphididae). J Chem Ecol 20:1923–1930CrossRefPubMedGoogle Scholar
  21. Gordon-Weeks R, Smart L, Ahmad S, Elek H, Zhang Y, Martin J, Pickett J (2010) The regulation of a natural plant defence pathway in wheat and its role in aphid resistance. Biology of plant-microbe interactions. In: Proceedings of the 14th International congress on molecular plant-microbe interactions. Quebec City, Quebec, CanadaGoogle Scholar
  22. Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage—2006 and 2007 market estimates. United States Environmental Protection Agency, Washington, p 33Google Scholar
  23. Handrick V, Robert CA, Ahern KR, Zhou S, Machado RA, Maag D, Glauser G, Fernandez-Penny FE, Chandran JN, Rodgers-Melnik E, Schneider B, Buckler ES, Boland W, Gershenzon J, Jander G, Erb M, Köllner TG (2016) Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell 28:1682–1700PubMedPubMedCentralGoogle Scholar
  24. Kazemi MH, Emden HV (1992) Partial antibiosis to Rhopalosiphum padi in wheat and some phytochemical correlations. Ann Appl Biol 121:1–9CrossRefGoogle Scholar
  25. Lanzarini AC, Schons J, Salvadori JR, Nienow AA, Nicolini-Teixeira F, Binotto-Missiura F, Deuner E (2007) Avaliação de danos causados pelo Barley yellow dwarf virus: PAV em cultivares de trigo no Brasil. Fitopatol Bras 32:512–517CrossRefGoogle Scholar
  26. Lau D, Pereira PRVS, Castro RL (2015) Ensaio estadual de cultivares de trigo do Rio Grande do Sul 2014—reação ao mosaico comum. In: Reunião da Comissão Brasileira de Pesquisa de Trigo e Triticale 2015, Passo Fundo. Anais… Biotrigo Genética, Passo FundoGoogle Scholar
  27. Lau D, Pereira PRVS, Salvadori JR, Schons J, Parizoto G, Mar TB (2009) Ocorrência do Barley/Cereal yellow dwarf virus e seus vetores em cereais de inverno no Rio Grande do Sul, Santa Catarina, Paraná e Mato Grosso do Sul em 2008. Embrapa Trigo, Passo Fundo, p 10Google Scholar
  28. Loayza-Muro R, Figueroa CC, Niemeyer HM (2000) Effect of two wheat cultivars differing in hydroxamic acid concentration on detoxification metabolism in the aphid Sitobion avenae. J Chem Ecol 26:2725–2736CrossRefGoogle Scholar
  29. Maag D, Dalvit C, Thevenet D, Köhler A, Wouters FC, Vassão DG, Gershenzon J, Wolfender JL, Turlings TCJ, Erb M, Glauser G (2014) 3-β-d-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry 102:97–105CrossRefPubMedGoogle Scholar
  30. Makowska B, Bakera B, Rakoczy-Trojanowska M (2015) The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiol Plant 37:176CrossRefGoogle Scholar
  31. Meihls LN, Handrick V, Glauser G, Barbier H, Kaur H, Haribal MM, Lipka AE, Gershenzon J, Buckler ES, Erb M, Köllner TG, Jander G (2013) Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell 25:2341–2355CrossRefPubMedPubMedCentralGoogle Scholar
  32. Molyneux RJ, Campbell BC, Dreyer DL (1990) Honeydew analysis for detecting phloem transport of plant natural products. Implications for host-plant resistance to sap-sucking insects. J Chem Ecol 16:1899–1909CrossRefPubMedGoogle Scholar
  33. Nicol D, Wratten SD (1997) The effect of hydroxamic acid concentration at late growth stages of wheat on the performance of the aphid Sitobion avenae. Ann Appl Biol 130:387–396CrossRefGoogle Scholar
  34. Nicol D, Copaja SV, Wratten SD, Niemeyer HM (1992) A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. Ann Appl Biol 121:11–18CrossRefGoogle Scholar
  35. Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. J Agric Food Chem 57:1677–1696CrossRefPubMedGoogle Scholar
  36. Niemeyer HM, Pesel E, Copaja SV, Bravo HR, Franke S, Francke W (1989) Changes in hydroxamic acid levels of wheat plants induced by aphid feeding. Phytochemistry 28:447–449CrossRefGoogle Scholar
  37. Parizoto G, Rebonatto A, Schons J, Lau D (2013) Barley yellow dwarf virus-PAV in Brazil: seasonal fluctuation and biological characteristics. Trop Plant Pathol 38:11–19CrossRefGoogle Scholar
  38. Pereira PRSV, Salvadori JR, Lau D (2010) Cereais de inverno: principais insetos-praga. In: Santos HP et al (eds) Sistemas de produção para cereais de inverno sob plantio direto no sul do Brasil. Embrapa Trigo, Passo Fundo, pp 225–254Google Scholar
  39. Peruzzo R, Salvadori JR, Pereira PRVS, Bertollo EC, Tonello LS (2007) Resposta de cultivares de trigo à infestação do pulgão Rhopalosiphum padi. Pesq Agropec Bras 42:1681–1685CrossRefGoogle Scholar
  40. Savaris M, Lampert S, Salvadori JR, Lau D, Pereira PRVS, Smaniotto MA (2013) Population growth and damage caused by Rhopalosiphum padi (L.) (Hemiptera, Aphididae) on different cultivars and phonological stages of wheat. Neotrop Entomol 42:539–543CrossRefPubMedGoogle Scholar
  41. Silva AM, Sampaio MV, de Oliveira RS, Korndorfer AP, Ferreira SE, Polastro GC, Dias PAS (2013) Antibiosis and non-preference of Sitobion avenae (F.) (Hemiptera:Aphididae) on leaves and ears of commercial cultivars of wheat (Triticum aestivum). Neotrop Entomol 42:304–310CrossRefPubMedGoogle Scholar
  42. Thackray DJ, Wratten SD, Edwards PJ, Niemeyer HM (1990) Resistance to the aphids Sitobion avenae and Rhopalosiphum padi in graminae in relation to hydroxamic acid levels. Ann Appl Biol 116:573–582CrossRefGoogle Scholar
  43. Whalon ME, Mota-Sanchez D, Hollingworth RM, Duynslager L (2017) Arthropod pesticide resistance data base. Accessed 25 March 2017
  44. Wouters FC, Gershenzon J, Vassão DG (2016) Benzoxazinoids: reactivity and modes of action of a versatile class of plant chemical defenses. J Braz Chem Soc 27:1379–1397Google Scholar
  45. Wratten SD, Thackray DJ, Edwards PJ, Niemeyer HM (1988) Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. In: Cavalloro R, Sunderland KD (eds) Integrated crop protection in cereals. AA Balkema, Rotterdam, pp 57–60Google Scholar
  46. Wyatt JI, White FP (1977) Simple estimation of intrinsicrates for aphids and tetranychid mites. J Appl Ecol 14:757–766CrossRefGoogle Scholar
  47. Züst T, Agrawal AA (2016) Mechanisms and evolution of plant resistance to aphids. Nat Plants 2:15206CrossRefPubMedGoogle Scholar

Copyright information

© Brazilian Society of Plant Physiology 2017

Authors and Affiliations

  • Jorge F. Pereira
    • 1
    • 2
    Email author
  • André L. F. Sarria
    • 3
  • Stephen J. Powers
    • 4
  • Gudbjorg I. Aradottir
    • 3
  • John C. Caulfield
    • 3
  • Janet Martin
    • 3
  • Lesley E. Smart
    • 3
  • John A. Pickett
    • 3
  • Michael A. Birkett
    • 3
  • Paulo R. V. S. Pereira
    • 1
  1. 1.Embrapa TrigoPasso FundoBrazil
  2. 2.Embrapa Gado de LeiteJuiz de ForaBrazil
  3. 3.Biological Chemistry and Crop Protection DepartmentRothamsted ResearchHertfordshireUK
  4. 4.Computational and Systems Biology DepartmentRothamsted ResearchHertfordshireUK

Personalised recommendations