From vineyards to controlled environments in grapevine research: investigating responses to climate change scenarios using fruit-bearing cuttings

  • Fermín Morales
  • María Carmen Antolín
  • Iker Aranjuelo
  • Nieves Goicoechea
  • Inmaculada Pascual


This paper describes the use of fruit-bearing grapevine hardwood cuttings as a model system for grapevine research, translating some studies that are difficult to execute under field conditions in the vineyards to facilities under controlled conditions. This approach enables to simulate in greenhouses future climate conditions and to investigate putative responses of grapevine to climate change. An updated description of how to grow grapevine fruit-bearing cuttings is made, together with modifications to carry out studies of partial rootzone drying, regulated deficit irrigation studies and symbiosis with arbuscular mycorrhizal fungi. We summarize how extensive has been the use of fruit-bearing cuttings in grapevine research over the years, with special emphasis in those experiments that analyze the effects of factors related to climate change, such as elevated CO2, elevated temperature, water availability and UV-B radiation, on grapevine physiology, production and grape quality. A validation of the model is made, comparing results obtained with fruit-bearing cuttings with those obtained from vineyard-grown plants. We discuss some advantages of growing grapevines under elevated CO2 with an atmosphere depleted in 13C, using this stable isotope (13C) and others (15N, 54Fe or 57Fe, etc.) as tracers for C, N and other nutrient metabolism studies.


Abiotic stress factors Climate change scenarios Fruit-bearing grapevine cuttings Model grapevine system Nutrient stable isotopes 



This work was supported by the European Project INNOVINE Call FP7-KBBE-2011-6, Proposal No. 311775, Spanish Ministry of Economy and Innovation (BFU2011-26989, AGL2011-30386-C02-02 and AGL2014-56075-C2-1-R), and Aragón Government (A03 Research Group). Authors acknowledge the great technical assistance of M. Oyarzun, H. Santesteban and A. Urdiain.


  1. Antolín MC, Ayari M, Sánchez-Díaz M (2006) Effects of partial rootzone drying on yield, ripening and Berry ABA in potted Tempranillo grapevines with split roots. Aust J Grape Wine Res 12:13–20CrossRefGoogle Scholar
  2. Antolín MC, Santesteban H, Santa María E, Aguirreolea J, Sánchez-Díaz M (2008) Involvement of abscisic acid and polyamines in berry ripening of Vitis vinifera (L.) subjected to water deficit irrigation. Aust J Grape Wine Res 14:123–133CrossRefGoogle Scholar
  3. Antolín MC, Santesteban H, Ayari M, Aguirreolea J, Sánchez-Díaz M (2010) Grapevine fruiting cuttings: an experimental system to study grapevine physiology under water deficit conditions. In: Delrot S, Gil HM, Or E, Bavaresco L, Grando S (eds) Methodologies and results in grapevine research. Springer, Dordrecht, pp 151–163CrossRefGoogle Scholar
  4. Aranjuelo I, Cabrera-Bosquet L, Morcuende R, Avice JC, Nogués S, Araus JL, Martínez-Carrasco R, Pérez P (2011) Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? J Exp Bot 62:3957–3969CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aranjuelo I, Sanz-Sáez A, Jauregui I, Irigoyen JJ, Araus JL, Sánchez-Díaz M, Erice G (2013) Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. J Exp Bot 64:1879–1892CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aranjuelo I, Erice G, Sanz-Sáez A, Abadie C, Gilard F, Gil-Quintana E, Avice JC, Staudinger C, Wienkoop S, Araus JL, Bourguignon J, Irigoyen JJ, Tcherkez G (2015) Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.). Plant Cell Environ 38:2780–2794CrossRefPubMedGoogle Scholar
  7. Avice JC, Ourry A, Lemaire G, Boucaud J (1996) Nitrogen and carbon flows estimated by 15 N and 13C pulse-chase labeling during regrowth of alfalfa. Plant Physiol 112:281–290PubMedPubMedCentralGoogle Scholar
  8. Ayari M (2005) Efecto del déficit hídrico sobre la maduración y la coloración de la baya en esquejes fructíferos de diferentes cultivares de vid (Vitis vinifera L.). Ph.D. Thesis, University of Navarra, SpainGoogle Scholar
  9. Baby T, Hocking B, Tyerman SD, Gilliham M, Collins C (2014) Modified method for producing grapevine plants in controlled environments. Am J Enol Vitic 65:261–267CrossRefGoogle Scholar
  10. Baluja J, Tardáguila J, Ayestarán B, Diago MP (2013) Spatial variability of grape composition in a Tempranillo (Vitis vinifera L.) vineyard over a 3-year survey. Precis Agric 14:40–58CrossRefGoogle Scholar
  11. Carbonell-Bejerano P, Santa María E, Torres-Pérez R, Royo C, Lijavetzky D, Bravo G, Aguirreolea J, Sánchez-Díaz M, Antolín MC, Martínez-Zapater JM (2013) Thermotolerance responses in ripening berries of Vitis vinifera L. cv. Muscat Hamburg. Plant Cell Physiol 54:1200–1216CrossRefPubMedGoogle Scholar
  12. Centeno A, Baeza P, Lissarrague JR (2010) Relationship between soil and plant water status in wine grapes under various water deficit regimes. Horttechnology 20:585–593Google Scholar
  13. Compant S, Kaplan H, Sessitsch A, Nowak J, Barka EA, Clément C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93CrossRefPubMedGoogle Scholar
  14. Coombe BG (1995) Adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110CrossRefGoogle Scholar
  15. Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 on woody plant mass, form and physiology. Oecologia 113:299–313CrossRefGoogle Scholar
  16. Dai ZW, Léon C, Feil R, Lunn JE, Delrot S, Gomès E (2013) Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit. J Exp Bot 64:1345–1355CrossRefPubMedPubMedCentralGoogle Scholar
  17. Diago MP, Vilanova M, Blanco JA, Tardáguila J (2010) Effects of mechanical thinning on fruit and wine composition and sensory attributes of Grenache and Tempranillo varieties (Vitis vinifera L.). Aust J Grape Wine Res 16:314–326CrossRefGoogle Scholar
  18. Duchêne E, Legras JL, Karst F, Merdinoglu D, Claudel P, Jaegli N, Pelsy F (2009) Variation of linalool and geraniol content within two pairs of aromatic and non-aromatic grapevine clones. Aust J Grape Wine Res 15:120–130CrossRefGoogle Scholar
  19. Eltom M, Winefield C, Trought MCT (2015) Effects of shoot girdling and/or periodic leaf removal on inflorescence primordia initiation and development in Vitis vinifera L. cv. Sauvignon Blanc. Aust J Grape Wine Res 21:118–122CrossRefGoogle Scholar
  20. Gamero E, Moreno D, Talaverano I, Prieto MH, Guerra MT, Valdés ME (2014) Effects of irrigation and cluster thinning on Tempranillo grape wine composition. S Afr J Enol Vitic 35:196–204Google Scholar
  21. Garde-Cerdán T, López R, Portu J, González-Arenzana I, López-Alfaro I, Santamaría P (2014) Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyard on grape amino acid content. Comparison with commercial nitrogen fertilizers. Food Chem 163:136–141CrossRefPubMedGoogle Scholar
  22. Gauthier PG, Bligny R, Gout E, Mahé A, Nogués S, Hodges M, Tcherkez GGB (2010) In folio isotope tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO2 assimilation in illuminated leaves of Brassica napus. New Phytol 185:988–999CrossRefPubMedGoogle Scholar
  23. Gauthier PG, Lamothe M, Mahé A, Molero G, Nogués S, Hodges M, Tcherkez G (2013) Metabolic origin of δ15N values in nitrogenous compounds from Brassica napus L. leaves. Plant Cell Environ 36:128–137CrossRefPubMedGoogle Scholar
  24. Gebbing T, Schnyder H, Kühbauch W (1999) The utilization of pre-anthesis reserves in grain filling of wheat. Assessment by steady-state 13CO2/12CO2 labelling. Plant Cell Environ 22:851–858CrossRefGoogle Scholar
  25. Geny L, Broquedis M, Martin Tanguy J, Soyer JP, Bouard J (1997) Effects of potassium nutrition on polyamine content of various organs of fruiting cuttings of Vitis vinifera L. cv. Cabernet Sauvignon. Am J Enol Vitic 48:85–92Google Scholar
  26. Geny L, Ollat N, Soyer JP (1998) Les boutures fructifères de vigne: validation d’un modèle d’étude de la physiologie de la vigne. II. Étude du développement de la grappe. J Int Sci Vigne Vin 32:83–90Google Scholar
  27. González-Fernández AB, Marcelo V, Valenciano JB, Rodríguez-Pérez (2012) Relationship between physical and chemical parameters for four commercial grape varieties from the Bierzo región (Spain). Sci Hortic 147:111–117CrossRefGoogle Scholar
  28. Gu SL, Lombard PB, Price SF (1994) Inflorescence necrosis induced from ammonium incubation and deterred by alpha-keto-glutarate and ammonium assimilation in Pinot Noir grapevines. Am J Enol Vitic 45:155–160Google Scholar
  29. Intrigliolo DS, Castel (2009) Response of Vitis vinifera L. cv. Tempranillo to partial rootzone drying in the field: water relations, growth, yield and fruit and wine quality. Agric Water Manage 96:282–292CrossRefGoogle Scholar
  30. Intrigliolo DS, Castel JR (2010) Response of grapevine cv. Tempranillo to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrigation Sci 28:113–125CrossRefGoogle Scholar
  31. Intrigliolo DS, Castel JR (2011) Interactive effects of deficit irrigation and shoot and cluster thinning on grapevine cv. Tempranillo. Water relations, vine performance and berry and wine composition. Irrigation Sci 29:443–454CrossRefGoogle Scholar
  32. Intrigliolo DS, Pérez D, Risco D, Yeves A, Castel JR (2012) Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Sci 30:339–349CrossRefGoogle Scholar
  33. IPCC (2007a) Observed changes in climate and their effects. In: Pachauri RK, Reisinger A (eds) Climate change: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Core Writing Team, Geneva, Switzerland IPCC, 2007Google Scholar
  34. IPCC (2007b) Climate change and its impacts in the near and long term under different scenarios. In: Pachauri RK, Reisinger A (Eds) Climate change: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Core Writing Team, Geneva, Switzerland IPCC, 2007Google Scholar
  35. Irigoyen JJ, Goicoechea N, Antolín MC, Pascual I, Sánchez-Díaz M, Aguirreolea J, Morales F (2014) Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: an updated survey. Plant Sci 226:22–29CrossRefPubMedGoogle Scholar
  36. Jackson DI (1991) Environmental and hormonal effects on development of early bunch stem necrosis. Am J Enol Vitic 42:290–294Google Scholar
  37. Jauregui I, Aroca R, Garnica M, Zamarreño AM, García-Mina JM, Serret MD, Parry M, Irigoyen JJ, Aranjuelo I (2015) Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature. Physiol Plantarum 155:338–354CrossRefGoogle Scholar
  38. Kizildeniz T, Mekni I, Santesteban H, Pascual I, Morales F, Irigoyen JJ (2015) Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agric Water Manage 159:155–164CrossRefGoogle Scholar
  39. Lebon G, Duchêne E, Brun O, Clément C (2005) Phenology of flowering and starch accumulation in grape (Vitis vinifera L.) cuttings and vines. Ann Bot 95:943–948CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lebon G, Wojnarowiez G, Holzapfel B, Fontaine F, Vaillant-Gaveau N, Clément C (2008) Sugars and flowering in the grapevine (Vitis vinifera L.). J Exp Bot 59:2565–2578CrossRefPubMedGoogle Scholar
  41. Leibar U, Aizpurua A, Unamunzaga O, Pascual I, Morales F (2015) How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures? Photosynth Res 124:199–215CrossRefPubMedGoogle Scholar
  42. Likar M, Hančević K, Radić T, Regvar M (2013) Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza 23:209–219CrossRefPubMedGoogle Scholar
  43. Loladze I (2014) Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLIFE:1–29. doi: 10.7554/eLife.02245
  44. Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ 14:729–739CrossRefGoogle Scholar
  45. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628CrossRefPubMedGoogle Scholar
  46. Lopes CM, Santos TP, Monteiro A, Rodrigues ML, Costa JM, Chaves MM (2011) Combining cover cropping with deficit irrigation in a Mediterranean low vigor vineyard. Sci Hortic 129:603–612CrossRefGoogle Scholar
  47. López-Giral N, González-Arenzana L, González-Ferrero C, López R, Santamaría P, López-Alfaro I, Garde-Cerdán T (2015) Pulsed electric field treatment to improve the phenolic compound extraction from Graciano, Tempranillo and Grenache grape varieties during two vintages. Innov Food Sci Emerg 28:31–39CrossRefGoogle Scholar
  48. Lovisolo C, Hartung W, Schubert A (2002) Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Funct Plant Biol 29:1349–1356CrossRefGoogle Scholar
  49. Maroco JP, Rodrigues ML, Lopes C, Chaves M (2002) Limitations to leaf photosynthesis in field-grown grapevine under drought-metabolic and modelling approaches. Funct Plant Biol 29:451–459CrossRefGoogle Scholar
  50. Martínez-Lüscher J, Morales F, Delrot S, Sánchez-Díaz M, Gomés E, Aguirreolea J, Pascual I (2013) Short- and long-term physiological responses of grapevine leaves to UV-B radiation. Plant Sci 213:114–122CrossRefPubMedGoogle Scholar
  51. Martínez-Lüscher J, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, Gomès E (2014a) Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profile in grapevine berries through transcriptomic regulation. Plant Cell Physiol 55:1925–1936CrossRefPubMedGoogle Scholar
  52. Martínez-Lüscher J, Torres N, Hilbert G, Richard T, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, Gomés E (2014b) Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonols and amino acids in grape berries. Phytochemistry 102:106–114CrossRefPubMedGoogle Scholar
  53. Martínez-Lüscher J, Morales F, Delrot S, Sánchez-Díaz M, Gomés E, Aguirreolea J, Pascual I (2015a) Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions. Plant Sci 232:13–22CrossRefPubMedGoogle Scholar
  54. Martínez-Lüscher J, Morales F, Sánchez-Díaz M, Delrot S, Aguirreolea J, Gomés E, Pascual I (2015b) Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant Sci 236:168–176CrossRefPubMedGoogle Scholar
  55. Martínez-Lüscher J, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, Gomès E (2016) UV-B alleviates the uncoupling effect of elevated CO2 and increased temperature on grape berry (Vitis vinifera cv. Tempranillo) anthocyanin and sugar accumulation. Aust J Grape Wine Res 22:87–95CrossRefGoogle Scholar
  56. Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol 10:23–36CrossRefPubMedGoogle Scholar
  57. Medrano H, Escalona JM, Cifre J, Bota J, Flexas J (2003) A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Funct Plant Biol 30:607–619CrossRefGoogle Scholar
  58. Medrano H, Pou A, Tomás M, Martorell S, Gulías J, Flexas J, Escalona JM (2012) Average daily light interception determines leaf water use efficiency among different canopy locations in grapevine. Agric Water Manage 114:4–10CrossRefGoogle Scholar
  59. Molero G, Tcherkez G, Araus JL, Nogués S, Aranjuelo I (2014) On the relationship between C and N fixation and amino acid synthesis in nodulated alfalfa (Medicago sativa L.). Funct Plant Biol 41:331–341CrossRefGoogle Scholar
  60. Moore BD, Cheng S-H, Sims D, Seemann JR (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 22:567–582CrossRefGoogle Scholar
  61. Morales F, Pascual I, Sánchez-Díaz M, Aguirreolea J, Irigoyen JJ, Goicoechea N, Antolín MC, Oyarzun M, Urdiain A (2014) Methodological advances: using greenhouses to simulate climate change scenarios. Plant Sci 226:30–40CrossRefPubMedGoogle Scholar
  62. Mullins MG (1966) Test-plants for investigations of the physiology of fruiting in Vitis vinifera L. Nature 209:419–420CrossRefGoogle Scholar
  63. Mullins MG, Rajasekaran K (1981) Fruiting cuttings: revised method for producing test plants of grapevine cultivars. Am J Enol Vitic 32:35–40Google Scholar
  64. Niculcea M, Martínez-Lapuente L, Guadalupe Z, Sánchez-Díaz M, Morales F, Ayestarán B, Antolín MC (2013) Effects of water-deficit irrigation on hormonal content and nitrogen compounds in developing berries of Vitis vinifera L. cv. Tempranillo. J Plant Growth Regul 32:551–563CrossRefGoogle Scholar
  65. Niculcea M, López J, Sánchez-Díaz M, Antolín MC (2014) Involvement of berry hormonal content in the response to pre- and post-veraison water deficit in different grapevine (Vitis vinifera L.) cultivars. Aust J Grape Wine Res 20:281–291CrossRefGoogle Scholar
  66. Niculcea M, Martínez-Lapuente L, Guadalupe Z, Sánchez-Díaz M, Ayestarán B, Antolín MC (2015) Characterization of phenolic composition of Vitis vinifera L. ‘Tempranillo’ and ‘Graciano’ subjected to deficit irrigation during berry development. Vitis 54:9–16Google Scholar
  67. Ollat N, Gaudillere JP (1998) The effect of limiting leaf area during stage I of berry growth on development and composition of berries of Vitis vinifera L. cv. Cabernet Sauvignon. Am J Enol Vitic 49:251–258Google Scholar
  68. Ollat N, Gény L, Soyer JP (1998) Les boutures fructifères de vigne: validation d’un modèle d’étude de la physiologie de la vigne. I. Principales caractéristiques de l’appareil végétatif. J Int Sci Vigne Vin 32:1–9Google Scholar
  69. Portu J, Santamaría P, López-Alfaro I, López R, Garde-Cerdán T (2015) Methyl jasmonate foliar application to Tempranillo vineyard improved grape and wine phenolic content. J Agric Food Chem 63:2328–2337CrossRefPubMedGoogle Scholar
  70. Prentice I, Farquhar G, Fasham M, Goulden M, Heinmann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) Climate change: the scientific basis. Contributions of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 183–238Google Scholar
  71. Rellán-Álvarez R, Giner-Martínez-Sierra J, Orduna J, Orera I, Rodríguez-Castrillón JA, García-Alonso JI, Abadía J, Álvarez-Fernández A (2010) Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51:91–102CrossRefPubMedGoogle Scholar
  72. Robitaille HA, Janick J (1979) Rapid production of small fruiting grapevines from softwood cuttings. HortScience 14:161Google Scholar
  73. Saladin G, Magné C, Clément C (2003a) Stress reactions in Vitis vinifera L. following soil application of the herbicide flumioxazin. Chemosphere 53:199–206CrossRefPubMedGoogle Scholar
  74. Saladin G, Magné C, Clément C (2003b) Effects of flumioxazin herbicide on carbon nutrition of Vitis vinifera L. J Agric Food Chem 51:4017–4022CrossRefPubMedGoogle Scholar
  75. Saladin G, Magné C, Clément C (2003c) Effects of fludioxonil and pyrimethanil, two fungicides used against Botrytis cinerea, on carbohydrate physiology in Vitis vinifera L. Pest Manag Sci 59:1083–1092CrossRefPubMedGoogle Scholar
  76. Saladin G, Magné C, Clément C (2003d) Physiological stress responses of Vitis vinifera L. to the fungicides fludioxonil and pyrimethanil. Pestic Biochem Phys 77:125–137CrossRefGoogle Scholar
  77. Salazar-Parra C (2011) Vid y cambio climático. Estudio del proceso de maduración de la baya en esquejes fructíferos de tempranillo en respuesta a la interacción de CO2 elevado, estrés hídrico y temperatura elevada. Ph.D. Thesis, University of Navarra, SpainGoogle Scholar
  78. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2010) Effects of climate change scenarios on Tempranillo grapevine (Vitis vinifera L.) ripening: response to a combination of elevated CO2 and temperature, and moderate drought. Plant Soil 337:179–191CrossRefGoogle Scholar
  79. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012a) Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes’ response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiol Plantarum 144:99–110CrossRefGoogle Scholar
  80. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012b) Photosynthetic response of Tempranillo grapevine to climate change scenarios. Ann Appl Biol 161:277–292CrossRefGoogle Scholar
  81. Salazar-Parra C, Aranjuelo I, Pascual I, Erice G, Sanz-Sáez A, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Araus JL, Morales F (2015) Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J Plant Physiol 174:97–109CrossRefPubMedGoogle Scholar
  82. Santesteban LG, Miranda C, Royo JB (2011) Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. Tempranillo. Agric Water Manage 98:1171–1179CrossRefGoogle Scholar
  83. Sawicki M, Jeanson E, Celiz V, Clément C, Jacquard C, Vaillant-Gaveau N (2012) Adaptation of grapevine flowers to cold involves different mechanisms depending on stress intensity. PLoS One 7(10):e46976CrossRefPubMedPubMedCentralGoogle Scholar
  84. Torres N, Goicoechea N, Antolín MC (2015) Antioxidant properties of leaves from different accessions of grapevine (Vitis vinifera L.) cv. Tempranillo after applying biotic and/or environmental modulator factors. Ind Crop Prod 76:77–85CrossRefGoogle Scholar
  85. Trouvelot S, Bonneau L, Redecker D, van Tuinen D, Adrian M, Wipf D (2015) Arbuscular mycorrhizal symbiosis in viticulture: a review. Agron Sustain Dev 35:1449–1467CrossRefGoogle Scholar
  86. Vaillant-Gaveau N, Maillard P, Wojnarowiez G, Gross P, Clément C, Fontaine F (2011) Inflorescence of grapevine (Vitis vinifera L.): a high ability to distribute its own assimilates. J Exp Bot 62:4183–4190CrossRefPubMedGoogle Scholar

Copyright information

© Brazilian Society of Plant Physiology 2016

Authors and Affiliations

  • Fermín Morales
    • 1
  • María Carmen Antolín
    • 2
  • Iker Aranjuelo
    • 3
    • 4
  • Nieves Goicoechea
    • 2
  • Inmaculada Pascual
    • 2
  1. 1.Dpto. Nutrición Vegetal, Estación Experimental de Aula Dei (EEAD)CSICZaragozaSpain
  2. 2.Grupo de Fisiología del Estrés en Plantas (Dpto. Biología Ambiental), Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño, Facultades de Ciencias y FarmaciaUniversidad de NavarraPamplonaSpain
  3. 3.Instituto de Agrobiotecnología (IdAB)Universidad Pública de Navarra-CSIC-Gobierno de NavarraMutilva BajaSpain
  4. 4.Department of Plant Biology and Ecology, Faculty of Science and TechnologyUniversity of Basque Country (UPV-EHU)BizkaiaSpain

Personalised recommendations