Ultraviolet-B radiation, water deficit and abscisic acid: a review of independent and interactive effects on grapevines

  • Rodrigo AlonsoEmail author
  • Federico J. Berli
  • Patricia Piccoli
  • Rubén Bottini


Viticulture is present around the word in a large diversity of climates. The water availability in the soil and the quality of sunlight are two environmental factors that affect the fruit characteristics for winemaking. Ultraviolet (UV)-B radiation comprises a small fraction of sunlight that reaches the Earth’s surface, but has enough energy to cause large photobiological effects on higher plants. High UV-B increases metabolites with antioxidant properties as phenolic and volatile organic compounds in berries that improve oenological quality although affecting growth and fruit yield. Water restriction is a common cultural practice used in many wine regions to increase berry quality for winemaking and it is well documented that main effects are mediated by abscisic acid (ABA). Generally, ABA is a phytohormone that, besides to control stomatal aperture, regulates many physiological and biochemical processes of acclimation to adverse environmental conditions; and also controls grape berry maturation. Stress conditions and/or environmental signals generally increase ABA, and a promotive effect by UV-B has been found in grapevines. This review provides an overview of existing literature on the effects of UV-B radiation, moderate water deficit practices and sprayed ABA on grapevines (Vitis vinifera L.). The focus is on the physiological and biochemical aspects affecting growth, yield and quality for winemaking.


ABA Drought Secondary metabolism UV-B Vitis vinifera



Abscisic acid


Oxygen radical absorbanse capacity


Photosynthetic active radiation




UV-absorbing compounds


Full UV-B treatment


Filtered UV-B treatment


Volatile organic compounds


Stem water potential


  1. Acevedo E, Hsiao TC, Henderson DW (1971) Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol 48:631–636PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alexieva V, Ivanov S, Sergiev I, Karanov E (2003) Interaction between stresses. Bulg J Plant Physiol 29:1–17Google Scholar
  3. Alonso R, Berli FJ, Bottini R, Piccoli P (2015) Acclimation mechanisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines. Plant Physiol Biochem 91:56–60. doi: 10.1016/j.plaphy.2015.03.011 PubMedCrossRefGoogle Scholar
  4. Balint G, Reynolds AG (2013) Impact of exogenous abscisic acid on vine physiology and grape composition of Cabernet Sauvignon. Am J Enol Vitic 64(1):74–87. doi: 10.5344/ajev.2012.12075 CrossRefGoogle Scholar
  5. Bandurska H, Niedziela J, Chadzinikolau T (2013) Separate and combined responses to water deficit and UV-B radiation. Plant Sci 213:98–105. doi: 10.1016/j.plantsci.2013.09.003 PubMedCrossRefGoogle Scholar
  6. Bartowsky EJ, Pretorius IS (2009) Microbial formation and modification of flavor and off-flavor compounds in wine. In Biology of microorganisms on grapes, in must and in wine. pp. 209–231. doi: 10.1007/978-3-540-85463-0_11
  7. Berli FJ, Bottini R (2013) UV-B and abscisic acid effects on grape berry maturation and quality. J Berry Res 3:1–14. doi: 10.3233/JBR-130047 Google Scholar
  8. Berli F, D’Angelo J, Cavagnaro B, Bottini R, Wuilloud R, Silva MF (2008) Phenolic composition in grape (Vitis vinifera L. cv. Malbec) ripened with different solar UV-B radiation levels by capillary zone electrophoresis. J Agric Food Chem 56(9):2892–2898. doi: 10.1021/jf073421+ PubMedCrossRefGoogle Scholar
  9. Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet- absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33(1):1–10. doi: 10.1111/j.1365-3040.2009.02044.x PubMedGoogle Scholar
  10. Berli FJ, Fanzone M, Piccoli P, Bottini R (2011) Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. Increasing biosynthesis of berry skin polyphenols. J Agric Food Chem 59(9):4874–4884. doi: 10.1021/jf200040z PubMedCrossRefGoogle Scholar
  11. Berli FJ, Alonso R, Bressan-Smith R, Bottini R (2013) UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiol Plantarum 149(1):127–140. doi: 10.1111/ppl.12012 CrossRefGoogle Scholar
  12. Berli FJ, Alonso R, Beltrano J, Bottini R (2015) High-altitude solar UV-B and abscisic acid sprays increase grape berry antioxidant capacity. Am J Enol Vitic 66(1):65–72. doi: 10.5344/ajev.2014.14067 CrossRefGoogle Scholar
  13. Bettaieb I, Zakhama N, Wannes WA, Kchouk ME, Marzouk B (2009) Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci Hort 120(2):271–275. doi: 10.1016/j.scienta.2008.10.016 CrossRefGoogle Scholar
  14. Bilger W, Johnsen T, Schreiber U (2001) UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. J Exp Bot 52(363):2007–2014PubMedCrossRefGoogle Scholar
  15. Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112(2–3):119–123. doi: 10.1016/j.fcr.2009.03.009 CrossRefGoogle Scholar
  16. Caldwell MM, Ballare CL, Bornman JF, Flint SD, Bjorn LO, Teramura AH, Kulandaivelu G, Tevini M (2003) Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photoch Photobio Sci 2(1):29–38CrossRefGoogle Scholar
  17. Carbonell-Bejerano P, Diago M-P, Martínez-Abaigar J, Martínez-Zapater JM, Tardáguila J, Núñez-Olivera E (2014) Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biol 14:183. doi: 10.1186/1471-2229-14-183 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carvalho LC, Coito JL, Gonçalves EF, Chaves MM, Amâncio S (2015) Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. Plant Biol 18:101–111. doi: 10.1111/plb.12410 PubMedCrossRefGoogle Scholar
  19. Castellarin SD, Matthews MA, Gaspero G, Gambetta GA (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227(1):101–112. doi: 10.1007/s00425-007-0598-8 PubMedCrossRefGoogle Scholar
  20. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30(3):239–264. doi: 10.1071/FP02076 CrossRefGoogle Scholar
  21. Chaves MM, Santos TP, Souza CR, Ortuño MF, Rodrigues ML, Lopes CM, Maroco JP, Pereira JS (2007) Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann Appl Biol 150(2):237–252. doi: 10.1111/j.1744-7348.2006.00123.x CrossRefGoogle Scholar
  22. Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105(5):661–676. doi: 10.1093/aob/mcq030 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Choné X (2001) Stem water potential is a sensitive indicator of grapevine water status. Ann Bot 87:477–483. doi: 10.1006/anbo.2000.1361 CrossRefGoogle Scholar
  24. Clavijo McCormick A, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17(5):303–310. doi: 10.1016/j.tplants.2012.03.012 PubMedCrossRefGoogle Scholar
  25. Cohen AC, Travaglia C, Bottini R, Piccoli P (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462. doi: 10.1139/B09-023 CrossRefGoogle Scholar
  26. Creelman RA (1989) Abscisic acid physiology and biosynthesis in higher plants. Physiol Plantarum 75:131–136. doi: 10.1111/j.1399-3054.1989.tb02074.x CrossRefGoogle Scholar
  27. Davies C, Böttcher C (2009) Hormonal control of grape berry ripening. Grapevine Molecular Physiology and Biotechnology. Springer, Netherlands, pp 229–261Google Scholar
  28. Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Mérillon JM, Cushman JC, Cramer GR (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genom 10:212. doi: 10.1186/1471-2164-10-212 CrossRefGoogle Scholar
  29. Deluc LG, Decendit A, Papastamoulis Y, Mérillon JM, Cushman JC, Cramer GR (2011) Water deficit increases stilbene metabolism in Cabernet Sauvignon berries. J Agric Food Chem 59:289–297PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085–1097. doi: 10.1105/tpc.7.7.1085 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Doupis G, Chartzoulakis K, Beis A, Patakas A (2011) Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. Aust J Grape Wine R 17(1):36–42. doi: 10.1111/j.1755-0238.2010.00114.x CrossRefGoogle Scholar
  32. Drilias P, Karabourniotis G, Levizou E, Nikolopoulos D, Petropoulou Y, Manetas Y (1997) The effects of enhanced UV-B radiation on the mediterranean evergreen sclerophyll Nerium oleander depend on the extent of summer precipitation. Aust J Plant Physiol 24(3):301–306. doi: 10.1071/PP96105 CrossRefGoogle Scholar
  33. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440. doi: 10.1080/07352680600899973 CrossRefGoogle Scholar
  34. Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198(1):16–32. doi: 10.1111/nph.12145 PubMedCrossRefGoogle Scholar
  35. Fedina I, Nedeva D, Georgieva K, Velitchkova M (2009) Methyl jasmonate counteract UV-B stress in barley seedlings. J Agron Crop Sci 195:204–212CrossRefGoogle Scholar
  36. Ferrara G, Mazzeo A, Matarrese AMS, Pacucci C, Pacifico A, Gambacorta G, Faccia M, Trani A, Gallo V, Cafagna I et al (2013) Application of abscisic acid (S-ABA) to “Crimson Seedless” grape berries in a mediterranean climate: effects on color, chemical characteristics, metabolic profile, and S-ABA concentration. J Plant Growth Regul 32:491–505. doi: 10.1007/s00344-012-9316-2 CrossRefGoogle Scholar
  37. Garde-Cerdán T, Lorenzo C, Carot JM, Esteve MD, Climent MD, Salinas MR (2010) Effects of composition, storage time, geographic origin and oak type on the accumulation of some volatile oak compounds and ethylphenols in wines. Food Chem 122(4):1076–1082. doi: 10.1016/j.foodchem.2010.03.077 CrossRefGoogle Scholar
  38. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414. doi: 10.1038/nchembio.2007.5 PubMedCrossRefGoogle Scholar
  39. Gil M, Pontin M, Berli F, Bottini R, Piccoli P (2012) Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. Phytochemistry 77:89–98. doi: 10.1016/j.phytochem.2011.12.011 PubMedCrossRefGoogle Scholar
  40. Gil M, Bottini R, Berli F, Pontin M, Silva MF, Piccoli P (2013) Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation. Phytochemistry 96:148–157. doi: 10.1016/j.phytochem.2013.08.011 PubMedCrossRefGoogle Scholar
  41. Gil M, Bottini R, Pontin M, Berli F, Salomon M, Piccoli P (2014) Solar UV-B radiation modifies the proportion of volatile organic compounds in flowers of field-grown grapevine (Vitis vinifera L.) cv. Malbec. Plant Growth Regul 74(2):193–197. doi: 10.1007/s10725-014-9911-2 CrossRefGoogle Scholar
  42. Gregan SM, Wargent JJ, Liu L, Shinkle J, Hofmann R, Winefield C, Trought M, Jordan B (2012) Effects of solar ultraviolet radiation and canopy manipulation on the biochemical composition of Sauvignon Blanc grapes. Aust J Grape Wine Res 18:227–238. doi: 10.1111/j.1755-0238.2012.00192.x CrossRefGoogle Scholar
  43. Guilford JM, Pezzuto JM (2011) Wine and health: a review. Am J Enol Vitic 62(4):471–486. doi: 10.5344/ajev.2011.11013 CrossRefGoogle Scholar
  44. Hamrouni I, Salah HB, Marzouk B (2001) Effects of water-deficit on lipids of safflower aerial parts. Phytochemistry 58(2):277–280. doi: 10.1016/S0031-9422(01)00210-2 PubMedCrossRefGoogle Scholar
  45. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet P, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci USA 110:6907–6912PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hectors K, Van Oevelen S, Guisez Y, Prinsen E, Jansen MAK (2012) The phytohormone auxin is a component of the regulatory system that controls UV-mediated accumulation of flavonoids and UV-induced morphogenesis. Physiol Plantarum 145(4):594–603. doi: 10.1111/j.1399-3054.2012.01590.x CrossRefGoogle Scholar
  47. Iacono F, Buccella A, Peterlunger E (1998) Water stress and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines. Sci Hort 75(1–2):27–39. doi: 10.1016/S0304-4238(98)00113-7 CrossRefGoogle Scholar
  48. Intrigliolo DS, Castel JR (2009) Response of grapevine cv. ‘Tempranillo’ to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrig Sci 28(2):113–125. doi: 10.1007/s00271-009-0164-1 CrossRefGoogle Scholar
  49. Jansen MAK (2002) Ultraviolet-B radiation effects on plants: induction of morphogenic responses. Physiol Plantarum 116(3):423–429. doi: 10.1034/j.1399-3054.2002.1160319.x CrossRefGoogle Scholar
  50. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431. doi: 10.1146/annurev.arplant.59.032607.092953 PubMedCrossRefGoogle Scholar
  51. Kakani VG, Reddy KR, Zhao D, Sailaja K (2003) Field crop responses to ultraviolet-B radiation: a review. Agr Forest Meteorol 120(1–4):191–218. doi: 10.1016/j.agrformet.2003.08.015 CrossRefGoogle Scholar
  52. Keller CP, Stahlberg R, Barkawi LS, Cohen JD (2004) Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis. Plant Physiol 134(3):1217–1226. doi: 10.1104/pp.103.032300 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kennedy JA, Matthews MA, Waterhouse AL (2002) Effect of maturity and vine water status on grape skin and wine flavonoids. Am J Enol Vitic 53(4):268–274Google Scholar
  54. Kolb CA, Käser MA, Kopecký J, Zotz G, Riederer M, Pfündel EE (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127(3):863–875. doi: 10.1104/pp.127.3.863 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Koyama K, Sadamatsu K, Goto-Yamamoto N (2010) Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomic 10(3):367–381. doi: 10.1007/s10142-009-0145-8 CrossRefGoogle Scholar
  56. Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N (2012) Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 78:54–64. doi: 10.1016/j.phytochem.2012.02.026 PubMedCrossRefGoogle Scholar
  57. Lacampagne S, Gagné S, Gény L (2010) Involvement of abscisic acid in controlling the proanthocyanidin biosynthesis pathway in grape skin: new elements regarding the regulation of tannin composition and leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities and expression. J Plant Growth Regul 29(1):81–90. doi: 10.1007/s00344-009-9115-6 CrossRefGoogle Scholar
  58. Leeuwen C, Tregoat O, Choné X, Bois B, Pernet D, Gaudillére JP (2009) Vine water status is a key factor in grape ripening and vintage quality for red bordeaux wine. How can it be assessed for vineyard management purposes. J Int Sci Vin 43(3):121–134Google Scholar
  59. Lim C, Baek W, Jung J, Kim JH, Lee S (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16:15251–15270. doi: 10.3390/ijms160715251 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Liu L, Gregan S, Winefield C, Jordan B (2014) From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry. Plant Cell Environ 1–15:905–919. doi: 10.1111/pce.12349 Google Scholar
  61. Lovisolo C, Perrone I, Carra A, Ferrandino A, Flexas J, Medrano H, Schubert A (2010) Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Funct Plant Biol 37(2):98–116. doi: 10.1071/FP09191 CrossRefGoogle Scholar
  62. Majer P, Hideg É (2012) Developmental stage is an important factor that determines the antioxidant responses of young and old grapevine leaves under UV irradiation in a green-house. Plant Physiol Biochem 50:15–23. doi: 10.1016/j.plaphy.2011.09.018 PubMedCrossRefGoogle Scholar
  63. Martínez-Lüscher J, Sanchez-Diaz M, Delrot S, Aguirreolea J, Pascual I, Gomes E (2014) Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation. Plant Cell Physiol 55:1925–1936. doi: 10.1016/j.plantsci.2014.12.013 PubMedCrossRefGoogle Scholar
  64. Martínez-Lüscher J, Morales F, Delrot S, Sánchez-Díaz M, Gomès E, Aguirreolea J, Pascual I (2015) Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions. Plant Sci 232:13–22. doi: 10.1016/j.plantsci.2014.12.013 PubMedCrossRefGoogle Scholar
  65. McKenzie R, Bodeker G, Scott G, Slusser J, Lantz K (2006) Geographical differences in erythemally-weighted UV measured at mid-latitude USDA sites. Photochem Photobiol Sci 5:343–352. doi: 10.1039/B510943D PubMedCrossRefGoogle Scholar
  66. McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photoch Photobio Sci 6(3):218–231. doi: 10.1039/b700017k CrossRefGoogle Scholar
  67. Medrano H, Tomás M, Martorell S, Escalona JM, Pou A, Fuentes S, Flexas J, Bota J (2015) Improving water use efficiency of vineyards in semi-arid regions. Rev Agron Sustain Dev 35(2):499–517. doi: 10.1007/s13593-014-0280-z CrossRefGoogle Scholar
  68. Moreno D, Berli FJ, Piccoli PN, Bottini R (2011) Gibberellins and abscisic acid promote carbon allocation in roots and berries of grapevines. J Plant Growth Regul 30(2):220–228. doi: 10.1007/s00344-010-9186-4 CrossRefGoogle Scholar
  69. Murcia G, Pontin M, Reinoso H, Baraldi R, Bertazza G, Gómez-Talquenca S, Bottini R, Piccoli PN (2015) ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Physiol Plantarum. doi: 10.1111/ppl.12390 Google Scholar
  70. Niculcea M, López J, Sánchez-Díaz M, Carmen Antolín M (2014) Involvement of berry hormonal content in the response to pre- and post-veraison water deficit in different grapevine (Vitis vinifera L.) cultivars. Aust J Grape Wine R 20(2):281–291CrossRefGoogle Scholar
  71. Núñez-Olivera E, Martínez-Abaigar J, Tomas R, Otero S, Arróniz-Crespo M (2006) Physiological effects of solar ultraviolet-B exclusion on two cultivars of Vitis vinifera L. from La Rioja, Spain. Am J Enol Vitic 57(4):441–448Google Scholar
  72. Ojeda H, Deloire A, Carbonneau A (2001) Influence of water deficits on grape berry growth. Vitis 40(3):141–145Google Scholar
  73. Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A (2002) Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz Am J Enol Vitic 53(4):261–267Google Scholar
  74. Ou C, Du X, Shellie K, Ross C, Qian MC (2010) Volatile compounds and sensory attributes of wine from cv. Merlot (Vitis vinifera L.) grown under differential levels of water deficit with or without a kaolin-based, foliar reflectant particle film. J Agric Food Chem 58:12890–12898. doi: 10.1021/jf102587x PubMedCrossRefGoogle Scholar
  75. Peppi MC, Fidelibus MW, Dokoozlian N (2006) Abscisic acid application timing and concentration affect firmness, pigmentation, and color of ‘flame seedless’ grapes. HortScience 41(6):1440–1445Google Scholar
  76. Peppi MC, Fidelibus MW, Dokoozlian N (2007) Application timing and concentration of abscisic acid affect the quality of ‘Redglobe’ grapes. J Hortic Sci Biotech 82:304–310. doi: 10.1080/14620316.2007.11512233 CrossRefGoogle Scholar
  77. Peppi MC, Walker MA, Fidelibus MW (2008) Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries. Vitis 47(1):11–14Google Scholar
  78. Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181(3):219–229. doi: 10.1016/j.plantsci.2011.05.009 PubMedCrossRefGoogle Scholar
  79. Piazena H (1996) The effect of altitude upon the solar UV-B and UV-A irradiance in the tropical Chilean andes. Sol Energy 57(2):133–140. doi: 10.1016/S0038-092X(96)00049-7 CrossRefGoogle Scholar
  80. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5(3):237–243. doi: 10.1016/S1369-5266(02)00251-0 PubMedCrossRefGoogle Scholar
  81. Pollard A, Wyn Jones RG (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144(3):291–298. doi: 10.1007/BF00388772 PubMedCrossRefGoogle Scholar
  82. Pontin M, Piccoli P, Francisco R, Bottini R, Martinez-Zapater JM, Lijavetzky D (2010) Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biol 10:224PubMedPubMedCentralCrossRefGoogle Scholar
  83. Quiroga AM, Berli FJ, Moreno D, Cavagnaro JB, Bottini R (2009) Abscisic acid sprays significantly increase yield per plant in vineyard-grown wine grape (Vitis vinifera L.) cv. Cabernet Sauvignon through increased berry set with no negative effects on anthocyanin content and total polyphenol index of both juice and wine. J Plant Growth Regul 28(1):28–35. doi: 10.1007/s00344-008-9070-7 CrossRefGoogle Scholar
  84. Reyes LF, Cisneros-Zevallos L (2003) Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). J Agric Food Chem 51(18):5296–5300. doi: 10.1021/jf034213u PubMedCrossRefGoogle Scholar
  85. Rizzini L, Favory J-J, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106PubMedCrossRefGoogle Scholar
  86. Robinson AL, Boss PK, Solomon PS, Trengove RD, Heymann H, Ebeler SE (2014) Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am J Enol Vitic 65:1–24. doi: 10.5344/ajev.2013.12070 CrossRefGoogle Scholar
  87. Rodrigues M, Chaves M, Wendler R, David M, Quick W, Leegood R, Stitt M, Pereira J (1993) Osmotic adjustment in water stressed grapevine leaves in relation to carbon assimilation. Funct Plant Biol 20(3):309–321. doi: 10.1071/PP9930309 Google Scholar
  88. Sansberro PA, Mroginski LA, Bottini R (2004) Foliar sprays with ABA promote growth of Ilex paraguariensis by alleviating diurnal water stress. Plant Growth Regul 42(2):105–111. doi: 10.1023/B:GROW.0000017476.12491.02 CrossRefGoogle Scholar
  89. Santesteban LG, Miranda C, Royo JB (2011) Suitability of pre-dawn and stem water potential as indicators of vineyard water status in cv. Tempranillo Aust J Grape Wine R 17(1):43–51. doi: 10.1111/j.1755-0238.2010.00116.x CrossRefGoogle Scholar
  90. Saradhi PP, Alia Arora S, Prasad KVSK (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209(1):1–5. doi: 10.1006/bbrc.1995.1461 PubMedCrossRefGoogle Scholar
  91. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomic 2(6):282–291. doi: 10.1046/j.1365-313X.2002.01359.x CrossRefGoogle Scholar
  92. Shellie KC, Bowen P (2014) Isohydrodynamic behavior in deficit-irrigated Cabernet Sauvignon and Malbec and its relationship between yield and berry composition. Irrig Sci 32(2):87–97. doi: 10.1007/s00271-013-0416-y CrossRefGoogle Scholar
  93. Sidhu D, Lund J, Kotseridis Y, Saucier C (2015) Methoxypyrazine analysis and influence of viticultural and enological procedures on their levels in grapes, musts, and wines. Crit Rev Food Sci Nutr 55:485–502. doi: 10.1080/10408398.2012.658587 PubMedCrossRefGoogle Scholar
  94. Siebert TE, Wood C, Elsey GM, Pollnitz AP (2008) Determination of rotundone, the pepper aroma impact compound, in grapes and wine. J Agric Food Chem 56(10):3745–3748. doi: 10.1021/jf800184t PubMedCrossRefGoogle Scholar
  95. Solovchenko A, Schmitz-Eiberger M (2003) Significance of skin flavonoids for UV-B-protection in apple fruits. J Exp Bot 54(389):1977–1984. doi: 10.1093/jxb/erg199 PubMedCrossRefGoogle Scholar
  96. Song J, Shellie KC, Wang H, Qian MC (2012) Influence of deficit irrigation and kaolin particle film on grape composition and volatile compounds in Merlot grape (Vitis vinifera L.). Food Chem 134(2):841–850. doi: 10.1016/j.foodchem.2012.02.193 PubMedCrossRefGoogle Scholar
  97. Travaglia C, Cohen AC, Reinoso H, Castillo C, Bottini R (2007) Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. J Plant Growth Regul 26(3):285–289. doi: 10.1007/s00344-007-9018-3 CrossRefGoogle Scholar
  98. Travaglia C, Reinoso H, Bottini R (2009) Application of abscisic acid promotes yield in field-cultured soybean by enhancing production of carbohydrates and their allocation in seed. Crop Pasture Sci 60(12):1131–1136. doi: 10.1071/CP08396 CrossRefGoogle Scholar
  99. Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30(6):967–977. doi: 10.1007/s10529-008-9639-z PubMedCrossRefGoogle Scholar
  100. Vaquero MJR, Alberto MR, de Nadra MCM (2007) Antibacterial effect of phenolic compounds from different wines. Food Control 18(2):93–101. doi: 10.1016/j.foodcont.2005.08.010 CrossRefGoogle Scholar
  101. Wei A, Shibamoto T (2007) Antioxidant activities and volatile constituents of various essential oils. J Agric Food Chem 55(5):1737–1742. doi: 10.1021/jf062959x PubMedCrossRefGoogle Scholar
  102. Wheeler S, Loveys B, Ford C, Davies C (2009) The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust J Grape Wine R 15(3):195–204. doi: 10.1111/j.1755-0238.2008.00045.x CrossRefGoogle Scholar
  103. Zhang Y, Dami IE (2012) Foliar application of abscisic acid Increases freezing tolerance of field-grown Vitis vinifera Cabernet franc grapevines. Am J Enol Vitic 63(3):377–384. doi: 10.5344/ajev.2012.12006 CrossRefGoogle Scholar
  104. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi: 10.1146/annurev.arplant.53.091401.143329 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Brazilian Society of Plant Physiology 2016

Authors and Affiliations

  • Rodrigo Alonso
    • 1
    • 2
    Email author
  • Federico J. Berli
    • 1
  • Patricia Piccoli
    • 1
  • Rubén Bottini
    • 1
  1. 1.Laboratorio de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias AgrariasCONICET-Universidad Nacional de CuyoMendozaArgentina
  2. 2.Catena Institute of WineBodega Catena ZapataMendozaArgentina

Personalised recommendations