Theoretical and Experimental Plant Physiology

, Volume 26, Issue 3–4, pp 167–175 | Cite as

Vacuolar proton pumps regulation during development of Vigna unguiculata seedlings under salt stress

  • Alana Cecília Menezes Sobreira
  • Yuri Maia
  • Deborah Moura Rebouças
  • Nila Maria Bezerril Fontenele
  • José Hélio Costa
  • Maria de Lourdes Oliveira Otoch
  • Luciana Maia Nogueira de Oliveira
  • Elena Graciela Orellano
  • Dirce Fernandes de MeloEmail author


Global climatic changes as high temperatures and low precipitation contribute to increase cultivated areas affected by high salt soil content. Soil salinity is well known to reduce the ability of plants to take up water and this quickly causes reduction in their growth rate. V-ATPase (EC and V-PPase (EC hydrolytic and proton transport activities, and gene expression were evaluated in hypocotyls of 3-, 5-, 7-day-old Vigna unguiculata (L.) Walp cv. Vita 3 germinated in 100 mM NaCl in order to highlight their differential regulation and activity modulation under salt stress. Semi-quantitative RT-PCR revealed that both genes were up-regulated by salt stress in all salt exposition times studied. Up-regulation was correlated with the increase in protein content at 5 and 7-day-old seedlings. Co-expression between A and E V-ATPase subunits was also observed. The hydrolytic and proton transport activities showed that these enzymes presented a differential modulation of their activities in the presence of 100 mM NaCl. These results suggest that V-ATPase and V-PPase activities are modulated by salt stress and a multi-step regulation is exerted in order to re-establish homeostasis.


Cowpea Proton pump Salinity stress Vacuolar membrane 





Bis-tris-propane [1,3-bis(tris(hydroxyl-methyl)methylamino)-propane]




Ethylene diamine tetra-acetic acid


Phenylmethyl-sulfonyl fluoride


Vacuolar H+-ATPase (EC


Vacuolar H+-PPase (EC



We thank Dr M. Maeshima for the kind gift of the antibody against V-ATPase subunit A and V-PPase and Dr Y. Kawamura for the kind gift of the antibody against V-ATPase subunit E.


  1. Asad S, Mukhtar Z, Mukhtar Z, Nazir F, Hashmi JA, Mansoor S, Zafar Y et al (2008) Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Mol Biotechnol 40(2):161–169PubMedCrossRefGoogle Scholar
  2. Ballesteros E, Pedro Donaire J, Belver A (1996) Effects of salt stress on H+-ATPase and H+-PPase activities of tonoplast-enriched vesicles isolated from sunflower roots. Physiol Plant 97(2):259–268CrossRefGoogle Scholar
  3. Binzel ML (1995) NaCl-induced accumulation of tonoplast and plasma membrane H+-ATPase message in tomato. Physiol Plant 94(4):722–728CrossRefGoogle Scholar
  4. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12(4):431–434PubMedCrossRefGoogle Scholar
  5. Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim et Biophys Acta (BBA)-Biomembr 1465(1):140–151CrossRefGoogle Scholar
  6. Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58(2):301–308PubMedCrossRefGoogle Scholar
  7. Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437CrossRefGoogle Scholar
  8. Colombo R, Cerana R (1993) Enhanced activity of tonoplast pyrophosphatase in NaCl-grown cells of Daucus carota. J Plant Physiol 142(2):226–229CrossRefGoogle Scholar
  9. Costa JH, Hasenfratz-Sauder M-P, Pham-Thi AT, Silva Lima MDG, Dizengremel P, Jolivet Y et al (2004) Identification in Vigna unguiculata (L.) Walp. of two cDNAs encoding mitochondrial alternative oxidase orthologous to soybean alternative oxidase genes 2a and 2b. Plant Sci 167(2):233–239CrossRefGoogle Scholar
  10. Dietz KJ (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52(363):1969–1980PubMedCrossRefGoogle Scholar
  11. Duan X-G, Yang A-F, Gao F, Zhang S-L, Zhang J-R (2007) Heterologous expression of vacuolar H+-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance. Protoplasma 232(1–2):87–95PubMedCrossRefGoogle Scholar
  12. Fernandes de Melo D, Jolivet Y, Façanha AR, Gomes Filho E, Silva Lima M, Dizengremel P (1994) Effect of salt stress on mitochondrial energy metabolism of Vigna unguiculata cultivars differing in NaCl tolerance. Plant Physiol Biochem 32(3):405–412Google Scholar
  13. Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66(2):375–400Google Scholar
  14. Fukuda A, Tanaka Y (2006) Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+-inorganic pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter in barley. Plant Physiol Biochem 44:351–358PubMedCrossRefGoogle Scholar
  15. Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot 55(397):585–594PubMedCrossRefGoogle Scholar
  16. Gao F, Gao Q, Duan X, Yue G, Yang A, Zhang J (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57(12):3259–3270PubMedCrossRefGoogle Scholar
  17. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL et al (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98(20):11444–11449PubMedCentralPubMedCrossRefGoogle Scholar
  18. Golldack D, Dietz KJ (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125:1643–1654PubMedCentralPubMedCrossRefGoogle Scholar
  19. Guo S, Yin H, Zhang X, Zhao F, Li P, Chen S et al (2006) Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol 60(1):41–50PubMedCrossRefGoogle Scholar
  20. Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Review Plant Physiol Plant Mol Biol 51:463–499CrossRefGoogle Scholar
  21. Janicka-Russak M, Kłobus G (2007) Modification of plasma membrane and vacuolar H+-ATPases in response to NaCl and ABA. J Plant Physiol 164(3):295–302PubMedCrossRefGoogle Scholar
  22. Kabała K, Kłobus G (2008) Modification of vacuolar proton pumps in cucumber roots under salt stress. J Plant Physiol 165(17):1830–1837PubMedCrossRefGoogle Scholar
  23. Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70(1):177–191PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kawamura Y, Arakawa K, Maeshima M, Yoshida S (2000) Tissue specificity of E subunit isoforms of plant vacuolar H+-ATPase and existence of isotype enzymes. J Biol Chem 275(9):6515–6522PubMedCrossRefGoogle Scholar
  25. Kawamura Y, Arakawa K, Maeshima M, Yoshida S (2001) ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V-ATPase. Eur J Biochem/FEBS 268(10):2801–2809CrossRefGoogle Scholar
  26. Koyro H-W, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad NMV, Prasad NMV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer science + Business media, LLC, New York, p 531Google Scholar
  27. Li Z, Baldwin CM, Hu Q, Liu H, Luo H (2010) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant, Cell Environ 33(2):272–289CrossRefGoogle Scholar
  28. Löw R, Rausch T (1996) In suspension-cultured Daucus carota cells salt stress stimulates H+-transport but not ATP hydrolysis of the V-ATPase. J Exp Bot 47(11):1725–1732CrossRefGoogle Scholar
  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  30. Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang J (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49(8):1150–1164PubMedCrossRefGoogle Scholar
  31. Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465(1–2):37–51PubMedCrossRefGoogle Scholar
  32. Maeshima M, Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264(33):20068–20073PubMedGoogle Scholar
  33. Maeshima M, Nakanishi Y, Matsuura-Endo C, Tanaka Y (1996) Proton pumps of the vacuolar membrane in growing plant cells. J Plant Res 109(1):119–125CrossRefGoogle Scholar
  34. Mariaux J-B, Becker A, Kemna I, Ratajczak R, Fischer-Schliebs E, Kramer D, et al. (1994) Visualization by freeze-fracture electron microscopy of intramembraneous particles corresponding to the tonoplast H+-pyrophosphatase and H+-ATPase of Kalanchoe daigremontiana Hamet et Perrier de la Bathie. Bot Acta v. 107(5):321–327Google Scholar
  35. Marques EC, Freitas PAF, Alencar NLM, Prisco JT, Gomes-Filho E (2013) Increased Na+ and Cl accumulation induced by NaCl salinity inhibits cotyledonary reserve mobilization and alters the source-sink relationship in establishing dwarf cashew seedlings. Acta Physiol Plant 35(7):2171–2182CrossRefGoogle Scholar
  36. Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58(1):83–102PubMedCrossRefGoogle Scholar
  37. Matsuura-Endo C, Maeshima M, Yoshida S (1992) Mechanism of the decline in vacuolar H+-ATPase activity in mung bean hypocotyls during chilling. Plant Physiol 100(2):718–722PubMedCentralPubMedCrossRefGoogle Scholar
  38. Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y et al (2003) Rapid increase of vacuolar volume in response to salt stress. Planta 216(3):397–402PubMedGoogle Scholar
  39. Nakamura Y, Kasamo K, Sakata M, Ohta E (1992) Stimulation of the extrusion of protons and H+-ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high-NaCl stress and its relation to external levels of Ca2+ IONS. Plant Cell Physiol 33(2):139–149Google Scholar
  40. Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109(3):735–742PubMedCentralPubMedGoogle Scholar
  41. O’neill SD, Bennett AB, Spanswick RM (1983) Characterization of a NO3-sensitive H+-ATPase from corn roots. Plant Physiol 72(3):837–846PubMedCentralPubMedCrossRefGoogle Scholar
  42. Otoch MLO, Sobreira ACM, Aragão MEF, Orellano EG, Silva Lima MG, Fernandes de Melo, D (2001) Salt modulation of vacuolar H+-ATPase and H+-Pyrophosphatase activities in Vigna unguiculata. J Plant Physiol 158:545–551Google Scholar
  43. Park S, Li J, Pittman JK, Berkowitz Ga, Yang H, Undurraga S et al (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102(52):18830–18835PubMedCentralPubMedCrossRefGoogle Scholar
  44. Queirós F, Fontes N, Silva P, Almeida D, Maeshima M, Gerós H et al (2009) Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt. J Exp Bot 60(4):1363–1374PubMedCrossRefGoogle Scholar
  45. Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta 1465(1–2):17–36PubMedCrossRefGoogle Scholar
  46. Reuveni M, Bennett AB, Bressan RA, Hasegawa PM (1990) Enhanced H+ transport capacity and ATP hydrolysis activity of the tonoplast H+-ATPase after NaCl adaptation. Plant Physiol 94(2):524–530PubMedCentralPubMedCrossRefGoogle Scholar
  47. Rozema J, Flowers T (2008) Ecology. Crops for a salinized world. Science (New York, N.Y.) 322(5907):1478–1480CrossRefGoogle Scholar
  48. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86(3):407–421Google Scholar
  49. Schnitzer D, Seidel T, Sander T, Golldack D, Dietz K-J (2011) The cellular energization state affects peripheral stalk stability of plant vacuolar H+-ATPase and impairs vacuolar acidification. Plant Cell Physiol 52(5):946–956PubMedCrossRefGoogle Scholar
  50. Silva P, Gerós H (2009) Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4(8):718–726PubMedCentralPubMedCrossRefGoogle Scholar
  51. Tavakoli N, Kluge C, Golldack D, Mimura T, Dietz KJ (2001) Reversible redox control of plant vacuolar H+-ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. Plant J 28(1):51–59PubMedCrossRefGoogle Scholar
  52. Wang Y, Leigh RA, Kaestner KH, Sze H (1986) Electrogenic H+-pumping pyrophosphatase in tonoplast vesicles of oat roots. Plant Physiol 81(2):497–502PubMedCentralPubMedCrossRefGoogle Scholar
  53. Ward JM, Sze H (1992) Proton transport activity of the purified vacuolar H+-ATPase from oats : direct stimulation by Cl. Plant Physiol 99(3):925–931PubMedCentralPubMedCrossRefGoogle Scholar
  54. Zahran HH, Marín-Manzano MC, Sánchez-Raya AJ, Bedmar EJ, Venema K, Rodríguez-Rosales MP (2007) Effect of salt stress on the expression of NHX-type ion transporters in Medicago intertexta and Melilotus indicus plants. Physiol Plant 131(1):122–130PubMedCrossRefGoogle Scholar
  55. Zhang M, Fang Y, Liang Z, Huang L (2012) Enhanced expression of vacuolar H+-ATPase subunit E in the roots is associated with the adaptation of Broussonetia papyrifera to salt stress. PLoS One 7(10):e48183PubMedCentralPubMedCrossRefGoogle Scholar
  56. Zhao Q, Zhao YJ, Zhao BC, Ge RC, Li M, Shen YZ et al (2009) Cloning and functional analysis of wheat V-H+-ATPase subunit genes. Plant Mol Biol 69(1–2):33–46PubMedCrossRefGoogle Scholar
  57. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71PubMedCrossRefGoogle Scholar

Copyright information

© Brazilian Society of Plant Physiology 2014

Authors and Affiliations

  • Alana Cecília Menezes Sobreira
    • 1
    • 2
  • Yuri Maia
    • 1
  • Deborah Moura Rebouças
    • 1
  • Nila Maria Bezerril Fontenele
    • 1
  • José Hélio Costa
    • 1
  • Maria de Lourdes Oliveira Otoch
    • 3
  • Luciana Maia Nogueira de Oliveira
    • 4
  • Elena Graciela Orellano
    • 5
    • 6
  • Dirce Fernandes de Melo
    • 1
    Email author
  1. 1.Laboratório de Bioenergética, Departamento de Bioquímica e Biologia MolecularUniversidade Federal do CearáFortalezaBrazil
  2. 2.Faculdade de Educação, Ciências e Letras de Iguatu – FECLIUniversidade Estadual do CearáIguatuBrazil
  3. 3.Centro de Ciências da SaúdeUniversidade Estadual do CearáCampus Itaperi FortalezaBrazil
  4. 4.Unidade Acadêmica de GaranhunsUniversidade Federal Rural de PernambucoPEBrazil
  5. 5.Molecular Biology Division Instituto de Biología Molecular y Celular de RosarioConsejo Nacional de Investigaciones Científicas y TécnicasRosarioArgentina
  6. 6.Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina

Personalised recommendations