Advertisement

Theoretical and Experimental Plant Physiology

, Volume 26, Issue 2, pp 101–113 | Cite as

Climate change and the potential spread of Sorghum halepense in the central area of Argentina based on growth, biomass allocation and eco-physiological traits

  • Eduardo Sixto Leguizamón
  • Horacio A. Acciaresi
Review
  • 179 Downloads

Abstract

Despite the research dedicated to understand the potential climate change impacts on cropping systems, little attention has been given to potential effects on the geographic range of agricultural weeds. This paper reviews some biological and eco-physiological features of Sorghum halepense populations and their current and potential spread in a central eco-region of Argentina. Above ground biomass accumulation of the weed shows very high accumulation rates, which in the case of rhizomes is boosted as the available resources in propagule increases. An increase in temperature by 15 % may increase the relative growth rate (RGR) by 50 % in a 20–90 days growth period. Not only biomass output but also biomass allocation is directly related to adaptation in changing environments. Populations adapted to limited water conditions are able to maintain a higher RGR under water restriction as compared to those adapted to more humid conditions. Regarding the temperature, climate models are coincident: a range of increase from 0.9 °C in the south to 1.4 °C in the north of Argentina is predicted for 2020–2040, as compared to the period 1961–1990. Concerning the rainfall, not yet a prediction but a real fact is the displacement of isohyets from east to south. The average frequency of the weed in the pool of fields recently surveyed in the central region was 37 %, which increased to 42 % in the field borders. We consider that this frequency is high, since all crop fields are managed with high technology level and herbicides have been applied not only during the crop cycles, but also in previous fallows. The high RGR and other physiological features of weed populations at low water availability, which is more frequent in the west of the surveyed region where the frontier of extensive crops have recently displaced, may explain higher frequencies found. Well-adapted S. halepense populations invading rainfed crops in this eco-region will likely to take advantage under the forthcoming forecasted climatic conditions. Since temperatures increase from east to west as shown in climograms, S. halepense populations will likely perform even better under the new climate conditions. Coupling the actual management to physiological traits, it is envisaged an increase of the weed frequency in the surveyed eco-regions.

Keywords

Johnson grass Global warming Above ground biomass Relative growth rate Weed potential spread Physiological traits Seeds Rhizomes 

References

  1. Acciaresi HA (2008) Respuestas morfologicas y fisiologicas en dos hibridos de Zea mays y poblaciones de Sorghum halepense inducidas por la competencia frente a la variacion de agua edafica. La Plata, Universidad Nacional de La Plata. Tesis Doctoral, pp 205Google Scholar
  2. Acciaresi HA, Asenjo CA (2003) Efecto alelopático de S. halepense (L.) Pers. sobre el crecimiento de plántula y la biomasa aérea y radical de Triticum aestivum (L.). Ecología Austral 13:49–61Google Scholar
  3. Acciaresi HA, Guiamet JJ (2010) Below-and above-ground growth and biomass allocation in maize and S. halepense in response to soil water competition. Weed Res 50:481–492CrossRefGoogle Scholar
  4. Acciaresi H, Yanniccari M, Leguizamón E, Guiamet J (2012) Leaf gas exchange and competitive ability of Zea mays and S. halepense as affected by water competition. Acta Agron Hung 60:231–246CrossRefGoogle Scholar
  5. Allen JA (1990) Establishment of bottomland oak plantations on the Yazoo National Wildlife Refuge Complex. South J Appl For 14:206–210Google Scholar
  6. Leguizamón ES, Berbery MT, Cortese P, García Sampedro C, Heit G, Ochoa MC, Sobrero MT, Arregui C, Sánchez D, Scotta R, Lutz A, Amuchástegui, A, Gigón R, Marchessi JE, Núñez C, Zorza E, Rivarola R, Scapini E, Fernández M, Suárez CE, Troiani H (2011) Vigilancia Fitosanitaria en Argentina: detección precoz de malezas cuarentenarias. In: XXXII Reunión Argentina de Botánica. Posadas, Argentina, pp 42Google Scholar
  7. Anderson LE, Appleby AP, Weseloh JW (1960) Characteristics of Johnson grass rhizomes. Weeds 8:402–406CrossRefGoogle Scholar
  8. Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetic of colonizing species. Academic Press, New York, pp 147–168Google Scholar
  9. Benjamin LR, Park SE (2007) The conductance model of plant growth and competition in monoculture and species mixtures: a review. Weed Res 47:284–298CrossRefGoogle Scholar
  10. Clements DR, Di Tommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240CrossRefGoogle Scholar
  11. Clements DR, Di Tommaso A (2012) Predicting weed invasion in Canada under climatic change. Evaluating evolutionary potential. Can J Plant Sci 92:1013–1020CrossRefGoogle Scholar
  12. Clements DR, Di Tommaso A, Jordan N, Booth B, Murphy SD, Cardina J, Doohan D, Mohler C, Swanton CJ (2004) Adaptability of plants invading North American cropland. Agric Ecosyst Environ 104:379–398CrossRefGoogle Scholar
  13. Convención Marco de las Naciones Unidas sobre el Cambio Climático (2007) 2ª Comunicación Nacional de la República Argentina, pp 199Google Scholar
  14. Cousens R, Mortimer AM (1995) Dynamics of weed populations. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Follak S, Essl F (2012) Spread dynamics and agricultural impact of Sorghum halepense, an emerging invasive species in central Europe. Weed Res 53:53–60CrossRefGoogle Scholar
  16. Geddes RD, Scott HD, Oliver LR (1979) Growth and water use by common cocklebur (Xanthium pensylvanicum) and soybean (Glycine max) under field conditions. Weed Sci 27:206–212Google Scholar
  17. Ghersa CM, Satorre EH, van Esso ML (1985) Seasonal patterns of Johnsongrass seed production in different agricultural systems. Isr J Bot 34:24–31Google Scholar
  18. Ghersa CM, Martinez-Ghersa MA, Satorre EH, van Esso ML, Chichotky G (1993) Seed dispersal, distribution and recruitment of seedlings of S. halepense (L.) Pers. Weed Res 33:79–88CrossRefGoogle Scholar
  19. Golden Software Inc. (2000) Surfer 3.2 User’s guide. Golden Software Inc., Golden, COGoogle Scholar
  20. Gressel J, Segel LA (1978) The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J Theor Biol 75:349–371PubMedCrossRefGoogle Scholar
  21. Hartzler RG, Gover A, Stellingwerf J (1991) Factors affecting winter survival of Johnson grass (Sorghum halepense) rhizomes. Weed Technol 5:108–110Google Scholar
  22. Heap I (2013) The international survey of herbicide resistant weeds (online). http://www.weedscience.org/In.asp. Accessed 6 Nov 2013
  23. Horowitz M (1973) Spatial growth of Sorghum halepense. Weed Res 13:200–208CrossRefGoogle Scholar
  24. Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616PubMedCrossRefGoogle Scholar
  25. Hunt R, Causton DR, Shipley B, Askew AP (2002) A modern tool for classical growth analysis. Ann Bot 90:485–488PubMedCrossRefGoogle Scholar
  26. Keeley PE, Tullen RJ (1979) Influence of planting date on the growth of Johnsongrass (Sorghum halepense) from seed. Weed Sci 27:554–558Google Scholar
  27. Kriticos DJ, Yonow T, Mc Fadyen RE (2007) The potential distribution of Chromolaena odorata (Siam weed) in relation to climate. Weed Res 45:246–254CrossRefGoogle Scholar
  28. Lambers H, Chapin III F, Pons T (1998) Growth and allocation. In: Lambers HF, Chapin III F, Pons T (eds) Plant physiological ecology. Springer, New York, pp 299–351Google Scholar
  29. Lass LW, Prather TS, Glenn NF, Weber KT, Mundt JT, Pettingill J (2005) A review of remote sensing of invasive weeds and example of the early detection of spotted knapweed (Centaurea maculosa) and babybreath (Gysophila paniculata) with a hyperspectral sensor. Weed Sci 53:242–251CrossRefGoogle Scholar
  30. Leguizamon ES (1986) Seed survival and patterns of seedling emergence in S. halepense (L.) Pers. Weed Res 26:397–403Google Scholar
  31. Leguizamón ES (1983) Dinámica poblacional de sorgo de Alepo (Sorghum halepense L. Pers.) en soja. Enfoque del estudio. INTA Informe Técnico No. 32:13Google Scholar
  32. Leguizamón ES (1997) Refinamiento del modelo poblacional de sorgo de Alepo (Sorghum halepense. L. Pers.). Efecto de la longitud de los rizomas. Optimización del impacto herbicida. In: VI Congreso Sociedad de la Sociedad Española de Malherbología. Valencia, Spain, pp 96–102Google Scholar
  33. Leguizamón ES (1999) The refinement of the population model of S. halepense (L.) Pers. under a soybean crop. In: Proceedings of the 1999 British crop protection conference-weeds, Brighton, UK, pp 364–372Google Scholar
  34. Leguizamón ES (2003) Biología Poblacional de sorgo de Alepo: Complementariedad de estrategias y efectos del sistema en la dinámica de la maleza. Rosario, Universidad Nacional de Rosario. Tesis Doctoral, pp 135Google Scholar
  35. Leguizamón ES (2008) Crecimiento de Sorghum halepense. L. Pers. Efectos del tipo y tamaño de propáguo. Ajuste de un modelo de conductancia. In: XXXI Congreso de la Sociedad Argentina de Fisiología Vegetal (SAFV). Rosario, Argentina, pp 18Google Scholar
  36. Leguizamón ES, Brovelli E, Allieri L, Giuggia AE (1986) Dinámica poblacional de sorgo de Alepo (Sorghum halepense. L. Pers.) en la secuencia trigo/soja. IDIA-INTA 437–440:44–48Google Scholar
  37. Leguizamón E, Yanniccari M, Guiamet J, Acciaresi H (2011) Growth, gas exchange and competitive ability of S. halepense populations under different soil water availability. Can J Plant Sci 91:1011–1025CrossRefGoogle Scholar
  38. Lolas PC, Coble HD (1980a) Johnsongrass (Sorghum halepense) growth characteristics as related to rhizome length. Weed Res 20:205–210CrossRefGoogle Scholar
  39. Lolas PC, Coble HD (1980b) Morphology and development of Johnsongrass plants from seeds and rhizomes. Weeds 9:58–562Google Scholar
  40. Mc Donald A, Riha S, Di Tommaso A, De Gaetano A (2009) Climate change and geography of weed damage: analysis of US maize systems suggests the potential for significant range transformation. Agric Ecosyst Environ 130:131–140CrossRefGoogle Scholar
  41. McWhorter CG (1989) History, biology and control of Johnsongrass. Reviews of Weed Science 4:21–85Google Scholar
  42. Oyer BE, Gries GA, Rogers BJ (1959) The seasonal development of Johnsongrass plants. Weeds 7:13–19CrossRefGoogle Scholar
  43. Patterson DT (1995) Effects of environmental stress on weed/crop interactions. Weed Sci 43:483–490Google Scholar
  44. Patterson DT, Flint EP (1983) Comparative water relations, photosynthesis and growth of Soybean (Glycine max) and seven associated weeds. Weed Sci 31:318–323Google Scholar
  45. Pattison RR, Mack RN (2008) Potential distribution of invasive tree Triadica sebifera (Euphorbiaceae) in the United States: evaluating CLIMEX predictions with field trials. Glob Change Biol 14:813–826CrossRefGoogle Scholar
  46. Ray JD, Sinclair TR (1997) Stomatal closure of maize hybrids in response to drying soil. Crop Sci 37:803–807CrossRefGoogle Scholar
  47. Ray JD, Samson BK, Sinclair TR (1997) Vegetative growth and soil water extraction of two maize hybrids during water deficits. Field Crops Research 52:135–142CrossRefGoogle Scholar
  48. Satorre EH, Ghersa CM, Pataro AM (1985) Prediction of S. halepense (L.). Pers. rhizome sprout emergence in relation to air temperature. Weed Res 25:103–109CrossRefGoogle Scholar
  49. ScaifeA CoxEF, Morris GEL (1987) The relationship between shoot weight, plant density and time during the propagation of tour vegetable species. Ann Bot 59:325–334Google Scholar
  50. Scopel AL, Ballaré CL, Ghersa CM (1988) Role of seed reproduction in the population ecology of S. halepense in Maize crops. J Appl Ecol 25:951–962CrossRefGoogle Scholar
  51. Scott HD, Geddes RD (1979) Plant water stress of soybean (Glycine max) and common cocklebur (Xanthium pensylvanicum): a comparison under field conditions. Weed Sci 27:285–289Google Scholar
  52. Stuart BL, Krieg DR, Abernathy JR (1985) Photosyntesis and stomatal conductance responses of Johnsongrass (Sorghum halepense) to water stress. Weed Sci 33:635–639Google Scholar
  53. Vila-Aiub MM, Balbi MC, Gundel PE, Ghersa CM, Powles SB (2007) Evolution of glyphosate-resistant Johnsongrass (Sorghum halepense) in glyphosate-resistant soybean. Weed Sci 55:566–571CrossRefGoogle Scholar
  54. Vitta JI, Leguizamón ES (1991) Dynamics and control of S. halepense (L.) Pers. shoot populations: a test of a thermal calendar model. Weed Res 31:73–79CrossRefGoogle Scholar
  55. Warwick SI, Black ID (1983) The biology of Canadian weeds.61: S. halepense (L.) Pers. Can J Plant Sci 63:997–1014CrossRefGoogle Scholar
  56. Warwick SI, Thompson BK, Black LD (1984) Population variation in Sorghum halepense Johnsongrass at the northern limits of its range. Can J Bot 62:1781–1790CrossRefGoogle Scholar
  57. Yang YW, Newton RJ, Miller FR (1990) Salinity tolerance in Sorghum. II. Cell culture response to sodium chloride in S. bicolor and S. halepense. Crop Sci 30:781–785CrossRefGoogle Scholar
  58. Young KE, Schrader TS (2007) Chapter 13: spatial distribution and risk assessment of Johnson grass (Sorghum halepense) in Big Bend National Park. In: KE Young, TS Schader, KG Boykin, C Caldwell, GW Roemer (eds) Early detection of invasive plants in Big Bend National Park: remote sensing and GIS strategies. USGS status and trends of biological resources program. Final report, pp 154Google Scholar
  59. Ziska LH (2003) Evaluation of yield loss in field sorghum from a C3 and C4 weed with increasing CO2. Weed Sci 51:914–918CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Eduardo Sixto Leguizamón
    • 1
  • Horacio A. Acciaresi
    • 2
  1. 1.Departamento de Sistemas de Producción Vegetal, Facultad de Ciencias AgrariasUniversidad Nacional de RosarioSanta FeArgentina
  2. 2.Departamento de Tecnología Agraria y Forestal, Facultad de Ciencias Agrarias y Forestales, Comisión Investigaciones Científicas (CIC)Universidad Nacional de La PlataLa PlataArgentina

Personalised recommendations