Cold impact and acclimation response of Coffea spp. plants

  • J. C. Ramalho
  • F. M. DaMatta
  • A. P. Rodrigues
  • P. Scotti-Campos
  • I. Pais
  • P. Batista-Santos
  • F. L. Partelli
  • A. Ribeiro
  • F. C. Lidon
  • A. E. Leitão
Original Paper

Abstract

Climate changes implicate an increase in climate instability and the occurrence of extreme temperature in the environment. In this context, the differential triggering of cold tolerance mechanisms among coffee plants, highlighting the existence of important genetic variability, is of up most importance to be exploited in genotype screening and breeding programs. This review deals with the identification and triggering of acclimation mechanisms that shield key functions and structures of photosynthesis, with a particular emphasis on experiments under environmental controlled conditions. These mechanisms allow plants to perform metabolic and structural adjustments, particularly under conditions of a gradual cold exposure, simulating the effects happening in the field under cold periods. Detailed attention is given to the strengthening of the antioxidative system and to the dynamics of the lipid matrix components in chloroplast membranes, since they were found to constitute crucial traits to an effective long-term acclimation and, therefore, to guarantee the economic sustainability of this important tropical cash crop, particularly in cultivation areas prone to the occurrence of low positive temperatures.

Keywords

Coffee Cold Oxidative stress Plant–environment interactions Reactive oxygen species Scavenging molecules Tolerance 

List of abbreviations

Amax

Photosynthetic capacity

APX

Ascorbate peroxidase

C16:0

Palmitic acid

C16:1t

3-trans-Hexadecenoic acid

C18:0

Stearic acid

C18:1

Oleic acid

C18:2

Linoleic acid

C18:3

Linolenic acid

Chl

Chlorophyll

3Chl*

Triplet state of Chl

CGA

Chlorogenic acid

CQA

Caffeoylquinic acid

Ci

Internal CO2 concentration

Cu/Zn–SOD

Cu/Zn–superoxide dismutase

Cyt

Cytochrome

DBI

Double bond index

DGDG

Digalactosyldiacylglycerol

DHAR

Dehydroascorbate reductase

FA

Fatty acid

ϕe

Estimate of the quantum yield of photosynthetic non-cyclic electron transport

Fv/Fm

Maximal photochemical efficiency of PS II

Fv′/Fm

Photochemical efficiency of PS II under photosynthetic steady-state conditions

GL

Galactolipid

GRed

Glutathione reductase

gs

Stomatal conductance to water vapour

H2O2

Hydrogen peroxide

LHCP

Light harvesting complex proteins

MDH

Malate dehydrogenase

MDHAR

Monodehydroascorbate reductase

MGDG

Monogalactosyldiacylglycerol

NPQ

Non-photochemical quenching

1O2

Singlet oxygen

O2•−

Superoxide anion radical

OH

Hydroxyl radical

qP

Photochemical quenching

PA

Phosphatidic acid

PC

Phosphatidylcholine

PG

Phosphatidylglycerol

PK

Pyruvate kinase

PI

Phosphatidylinositol

PL

Phospholipid

Pn

Net photosynthetic rate

PQ

Plastoquinone

PSI and II

Photosystems I and II

ROS

Reactive oxygen species

RuBisCo

Ribulose-1,5-bisphosphate carboxylase/oxygenase

TFA

Total fatty acids

Notes

Acknowledgments

The authors thank E. Lopes and I. Palos (IICT) for technical support. This work was supported by Portuguese National Funds of Fundação para a Ciência e a Tecnologia, through the Grant SFRH/BPD/78619/2011 (P. Batista-Santos).

References

  1. Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42PubMedCrossRefGoogle Scholar
  2. Alonso A, Queiroz CS, Magalhães AC (1997) Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. Biochim Biophys Acta 1323:75–84PubMedCrossRefGoogle Scholar
  3. Amaral JAT, DaMatta FM, Rena AB (2001) Effects of fruiting on the growth of Arabica coffee trees as related to carbohydrate and nitrogen status and to nitrate reductase activity. Braz J Plant Physiol 13:66–74Google Scholar
  4. Amaral JAT, Rena AB, Amaral JFT (2006) Crescimento vegetativo sazonal do cafeeiro e sua relação com fotoperíodo, frutificação, resistência estomática e fotossíntese. Pesquisa Agropecuária Brasileira 41:377–384CrossRefGoogle Scholar
  5. Aphalo PJ, Lahti M, Lehto T, Repo T, Rummukainen A, Mannerkoski H, Finér L (2006) Responses of silver birch saplings to low soil temperature. Silva Fennica 40:429–442Google Scholar
  6. Aroca R, Vernieri P, Irigoyen JJ, Sánchez-Díaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679CrossRefGoogle Scholar
  7. Asada K (1994) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to the field. BIOS Scientific Publishers Ltd., Oxford, pp 129–142Google Scholar
  8. Assad ED, Pinto HS, Zullo J Jr, Ávila AMH (2004) Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil. Pesquisa Agropecuária Brasileira 39:1057–1064CrossRefGoogle Scholar
  9. Barros RS, Maestri M (1974) Influência dos fatores climáticos sobre a periodicidade de crescimento vegetativo do café (Coffea arabica L.). Revista Ceres 21:268–279Google Scholar
  10. Barros RS, Mota JW, DaMatta FM, Maestri M (1997) Decline of vegetative growth in Coffea arabica L. in relation to leaf temperature, water potential and stomatal conductance. Field Crops Res 54:65–72CrossRefGoogle Scholar
  11. Batista-Santos P, Lidon FC, Fortunato A, Leitão AE, Lopes E, Partelli F, Ribeiro AI, Ramalho JC (2011) The impact of cold on photosynthesis in genotypes of Coffea spp.—photosystem sensitivity, photoprotective mechanisms and gene expression. J Plant Physiol 168:792–806PubMedCrossRefGoogle Scholar
  12. Bauer H, Wierer R, Hatheway WH, Larcher W (1985) Photosynthesis of Coffea arabica after chilling. Physiol Plant 64:449–454CrossRefGoogle Scholar
  13. Bauer H, Comploj A, Bodner M (1990) Susceptibility to chilling of some Central-African cultivars of Coffea arabica. Field Crops Res 24:119–129CrossRefGoogle Scholar
  14. Bicho NC, Oliveira JFS, Lidon FC, Ramalho JC, Leitão AE (2011) O café: origens, produção, processamento e definição de qualidade. Escolar Editora, Lisbon, p 171. ISBN 978-972-592-322-1Google Scholar
  15. Bohn M, Lüthje S, Sperling P, Heinz E, Dörffling K (2007) Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance. J Plant Physiol 164:146–156PubMedCrossRefGoogle Scholar
  16. Camargo AP (1985) O clima e a cafeicultura no Brasil. Informe Agropecuário, Belo Horizonte 11(126):13–26Google Scholar
  17. Campos PS, Quartin V, Ramalho JC, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292PubMedCrossRefGoogle Scholar
  18. Cavatte PC, Oliveira AAG, Morais LE, Martins SCV, Sanglard LMVP, DaMatta FM (2012) Could shading reduce the negative impacts of drought on coffee? A morphophysiological analysis. Physiol Plant 114:111–122CrossRefGoogle Scholar
  19. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  20. Coste R (1992) Coffee: the plant and the product. MacMillan, London, p 328Google Scholar
  21. DaMatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Res 86:99–114CrossRefGoogle Scholar
  22. DaMatta FM, Ramalho JC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18:55–81CrossRefGoogle Scholar
  23. DaMatta FM, Maestri M, Mosquim PR, Barros RS (1997) Photosynthesis in coffee (Coffea arabica and C. canephora) as affected by winter and summer conditions. Plant Sci 128:43–50CrossRefGoogle Scholar
  24. Davis AP, Govaerts R, Bridson DM, Stoffelen P (2006) An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot J Linn Soc 152:465–512CrossRefGoogle Scholar
  25. Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7(11):e47981PubMedCentralPubMedCrossRefGoogle Scholar
  26. Dias AS, Barreiro MG, Campos PS, Ramalho JC, Lidon FC (2010) Wheat celular thermotolerance under heat stress. J Agron Crop Sci 196(2):100–108CrossRefGoogle Scholar
  27. Dong JZ, Dunstan DI (1997) Endochitinase and -1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201:189–194PubMedCrossRefGoogle Scholar
  28. Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44CrossRefGoogle Scholar
  29. Fortunato A, Lidon FC, Batista-Santos P, Leitão AE, Pais IP, Ribeiro AI, Ramalho JC (2010) Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J Plant Physiol 167:333–342PubMedCrossRefGoogle Scholar
  30. Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717CrossRefGoogle Scholar
  31. Gao J–J, Li T, Yu X-C (2009) Gene expression and activities of SOD in cucumber seedlings were related with concentrations of Mn2+, Cu2+, or Zn2+ under low temperature stress. Agric Sci China 8:678–684CrossRefGoogle Scholar
  32. Gay C, Estrada F, Conde C, Eakin H, Villers L (2006) Potential impacts of climate change on agriculture: a case of study of coffee production in Veracruz, Mexico. Clim Change 79:259–288CrossRefGoogle Scholar
  33. Gombos Z, Murata N (1998) Genetic engineering of the unsaturation of membrane glycerolipid: effects on the ability of the photosynthetic machinery to tolerate temperature stress. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics, series advances in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 249–262Google Scholar
  34. Gorsuch PA, Pandey S, Atkin OK (2010) Thermal de-acclimation: how permanent are leaf phenotypes when cold-acclimated plants experience warming? Plant Cell Environ 33:1124–1137PubMedCrossRefGoogle Scholar
  35. Goulao LF, Fortunato AS, Ramalho JC (2012) Selection of reference genes for normalizing quantitative real-time PCR gene expression data with multiple variables in Coffea spp. Plant Mol Biol Rep 30:741–759CrossRefGoogle Scholar
  36. Grace SC (2005) Phenolics as antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen in plants. Blackwell, Oxford, pp 141–168Google Scholar
  37. Gray GR, Ivanov AG, Krol M, Williams JP, Kahn MU, Myscich EG, Huner NPA (2005) Temperature and light modulate the trans-Δ3-hexadecenoic acid content of phosphatidylglycerol: light-harvesting complex II organization and non-photochemical quenching. Plant Cell Physiol 46:1272–1282PubMedCrossRefGoogle Scholar
  38. Harwood JL (1997) Plant lipid metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, San Diego, pp 237–271CrossRefGoogle Scholar
  39. Harwood JL (1998) Involvement of chloroplast lipids in the reaction of plants submitted to stress. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Series advances in photosynthesis, vol 6. Kluwer Academic Publishers, Dordrecht, pp 287–302CrossRefGoogle Scholar
  40. Hideg E, Kós PB, Vass I (2007) Photosystem II damage induced by chemically generated singlet oxygen in tobacco leaves. Physiol Plant 131:33–40PubMedCrossRefGoogle Scholar
  41. Iba I (2002) Acclimation response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245PubMedCrossRefGoogle Scholar
  42. International Coffee Organization (ICO) (2013) Statistics. Disponível em. http://www.ico.org/trade_statistics.asp. Accessed 7 Oct 2013
  43. Kodama H, Horiguchi G, Nishiuchi T, Nishimura M, Iba K (1995) Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiol 107:1177–1185PubMedCentralPubMedGoogle Scholar
  44. Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350CrossRefGoogle Scholar
  45. Larcher W (1981) Effects of low temperature stress and frost injury on plant productivity. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworths, London, pp 253–269CrossRefGoogle Scholar
  46. Leshem Y (1992) Plant membranes: a biophysical approach to structure, development and senescence. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  47. Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395PubMedCrossRefGoogle Scholar
  48. Libardi VCM, Amaral JAT, Amaral JFT (1998) Crescimento vegetativo sazonal do cafeeiro (Coffea canephora Pierre var. Conilon) no sul do Estado do Espírito Santo. Revista Brasileira de Agrometeorologia 6:23–28Google Scholar
  49. Lidon FC, Henriques FS (1993) Oxygen-metabolism in higher plant chloroplasts. Photosynthetica 29(2):249–279Google Scholar
  50. Lidon FC, Loureiro AS, Vieira DE, Bilho EA, Nobre P, Costa R (2001a) Photoinhibition in chilling stressed wheat and maize. Photosynthetica 39(2):161–166CrossRefGoogle Scholar
  51. Lidon FC, Ribeiro G, Santana H, Marques H, Correia K, Gouveia S (2001b) Photoinhibition in chilling stressed Leguminosae: comparison of Vicia fava and Pisum sativum. Photosynthetica 39(1):17–22CrossRefGoogle Scholar
  52. Lima ALS, DaMatta FM, Pinheiro AH, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247CrossRefGoogle Scholar
  53. Logan BA (2005) Reactive oxygen species and photosynthesis. In: Smirnoff N (ed) Antioxidants and reactive oxygen in plants. Blackwell, Oxford, pp 250–267Google Scholar
  54. Ma Y-Z, Holt NE, Li X-P, Niyogi KK, Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100:4377–4382PubMedCentralPubMedCrossRefGoogle Scholar
  55. Marraccini P, Freire LP, Alves GSC, Vieira NG, Vinecky F, Elbelt S, Ramos HJO, Montagnon C, Vieira LGE, Leroy T, Pot D, Silva VA, Rodrigues GC, Andrade AC (2011) RBCS1 expression in coffee: coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biol 11:85PubMedCentralPubMedCrossRefGoogle Scholar
  56. Marraccini P, Vinecky F, Alves GSC, Ramos HJO, Elbelt S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MAG, Leroy T, Pot D, Vieira LGE, Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4212PubMedCentralPubMedCrossRefGoogle Scholar
  57. Marré WB (2012) Crescimento vegetativo e acúmulo de nutrientes em diferentes genótipos do cafeeiro Conilon. Universidade Federal do Espírito Santo, São MateusGoogle Scholar
  58. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, pp 889. ISBN 0-12-473542-6Google Scholar
  59. Matiello JB (1998) Café Conillon: Como Plantar, Tratar, Colher, Preparar e Vender. MM Produções Gráficas, Rio de JaneiroGoogle Scholar
  60. Mills RF, Doherty ML, López-Marqués RL, Weimar T, Dupree P, Palmgren MG, Pittman JK, Williams LE (2008) ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis. Plant Physiol 146:116–128PubMedCentralPubMedCrossRefGoogle Scholar
  61. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefGoogle Scholar
  62. Mondego JM, Vidal RO, Carazzolle MF, Tokuda EK, Parizzi LP, Costa GG, Pereira LF, Andrade AC, Colombo CA, Vieira LGE, Pereira GAG (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30PubMedCentralPubMedCrossRefGoogle Scholar
  63. Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748PubMedCrossRefGoogle Scholar
  64. Murata N, Siegenthaler P-A (1998) Lipids in photosynthesis: an overview. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics, series advances in photosynthesis, vol 6. Kluwer Academic Publishers, Dordrecht, pp 1–20CrossRefGoogle Scholar
  65. Navari-Izzo F, Ricci F, Vazzana C, Quartacci M (1995) Unusual composition of thylakoid membranes of the resurrection plant Boea hygroscopica: changes in lipids upon dehydration and rehydration. Physiol Plant 94:135–142CrossRefGoogle Scholar
  66. Nazareno RB, Oliveira CAS, Sanzonowicz C, Sampaio JBR, Silva JCP, Guerra AF (2003) Crescimento inicial do cafeeiro Rubi em respostas a doses de nitrogênio fósforo e potássio e a regime hídricos. Pesquisa Agropecuária Brasileira 38:903–910CrossRefGoogle Scholar
  67. Oliveira JG, Alves PLCA, Magalhães AC (2002) The effect of chilling on the photosynthetic activity in coffee (Coffea arabica L.) seedlings. The proactive action of chloroplastid pigments. Braz J Plant Physiol 14:95–104Google Scholar
  68. Öquist G (1982) Seasonally induced changes in acyl lipids and fatty acids of chloroplast thylakoids of Pinus silvestris. A correlation between the level of unsaturation of monogalatosyldiglyceride and the rate of electron transport. Plant Physiol 69:869–875PubMedCentralPubMedCrossRefGoogle Scholar
  69. Partelli FL, Vieira HD, Viana AP, Batista-Santos P, Leitão AE, Ramalho JC (2009) Low temperature impact on photosynthetic parameters in coffee genotypes. Pesquisa Agropecuária Brasileira 44:1404–1415CrossRefGoogle Scholar
  70. Partelli FL, Vieira HD, Silva MG, Ramalho JC (2010) Seasonal vegetative growth of different age branches of Conilon coffee tree. Semina: Ciências Agrárias 31:619–626Google Scholar
  71. Partelli FL, Batista-Santos P, Scotti-Campos P, Pais IP, Quantin VL, Vieira HD, Ramalho JC (2011) Characterization of the main lipid components of chloroplast membranes and cold induced changes in Coffea spp. Environ Exp Bot 74:194–204CrossRefGoogle Scholar
  72. Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148:455–466PubMedCentralPubMedCrossRefGoogle Scholar
  73. Pinheiro AH, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME (2004) Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought. Plant Sci 167:1307–1314CrossRefGoogle Scholar
  74. Pompelli MF, Martins SCV, Antunes WC, Chaves ARM, DaMatta FM (2010) Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. J Plant Physiol 167:1052–1060PubMedCrossRefGoogle Scholar
  75. Praxedes SC, DaMatta FM, Loureiro ME, Ferrão MAG, Cordeiro AT (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263–273CrossRefGoogle Scholar
  76. Queiroz CGS, Mares-Guia ML, Magalhães AC (2000) Microcalorimetric evaluation of metabolic heat rates in coffee (Coffea arabica L.) roots of seedlings subjected to chilling stress. Thermochim Acta 351:33–37CrossRefGoogle Scholar
  77. Ramalho JC, Pons T, Groeneveld H, Nunes MA (1997) Photosynthetic responses of Coffea arabica L. leaves to a short-term high light exposure in relation to N availability. Physiol Plant 101:229–239CrossRefGoogle Scholar
  78. Ramalho JC, Campos PS, Teixeira M, Nunes MA (1998) Nitrogen dependent changes in antioxidant systems and in fatty acid composition of chloroplast membranes from Coffea arabica L. plants submitted to high irradiance. Plant Sci 135:115–124CrossRefGoogle Scholar
  79. Ramalho JC, Campos PS, Quartin VL, Silva MJ, Nunes MA (1999) High irradiance impairments on electron transport, ribulose-1,5-bisphosphate carboxylase/oxygenase and N assimilation as function of N availability in Coffea arabica L. plants. J Plant Physiol 154:319–326CrossRefGoogle Scholar
  80. Ramalho JC, Pons T, Groeneveld H, Azinheira HG, Nunes MA (2000) Photosynthetic acclimation to high light conditions in mature leaves of Coffea arabica L.: role of xanthophylls, quenching mechanisms and nitrogen nutrition. Aust J Plant Physiol 27:43–51Google Scholar
  81. Ramalho JC, Marques NC, Semedo JN, Matos MC, Quartin VL (2002) Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality. Plant Biol 4:112–120CrossRefGoogle Scholar
  82. Ramalho JC, Quartin V, Leitão AE, Campos PS, Carelli ML, Fahl JI, Nunes MA (2003) Cold acclimation ability of photosynthesis among species of the tropical Coffea genus. Plant Biol 5:631–641CrossRefGoogle Scholar
  83. Ramalho JC, Fortunato AS, Goulao LF, Lidon FC (2013a) Cold-induced changes in mineral content in Coffea spp. leaves: identification of descriptors for tolerance assessment. Biol Plant 57(3):495–506CrossRefGoogle Scholar
  84. Ramalho JC, Rodrigues AP, Semedo JN, Pais I, Martins LD, Simões-Costa MC, Leitão AE, Fortunato AS, Batista-Santos P, Palos I, Tomaz MA, Scotti-Campos P, Lidon FC, DaMatta FM (2013b) Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2]. PLOS ONE. 8(12):e82712. doi: 10.1371/journal.pone.0082712
  85. Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149CrossRefGoogle Scholar
  86. Rena AB (2000) Consequências fisiológicas das baixas temperaturas no cafeeiro. Circular Técnica. Lavras: EPAMIG/CRSM, n. 99Google Scholar
  87. Routaboul JM, Fischer S, Browse J (2000) Trienoic fatty acids are required to maintain chloroplast function at low temperature. Plant Physiol 124:1697–1705PubMedCentralPubMedCrossRefGoogle Scholar
  88. Sasaki C, Vårum KM, Itoh Y, Tamoi M, Fukamizo T (2006) Rice chitinases: sugar recognition specificities of the individual subsites. Glycobiology 16:1242–1250PubMedCrossRefGoogle Scholar
  89. Scotti-Campos P, Pais IP, Partelli FL, Batista-Santos P, Ramalho JC (2014) Phospholipids profile in chloroplasts of Coffea spp. genotypes differing in cold acclimation ability. J Plant Physiol 171:243–249Google Scholar
  90. Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217PubMedCrossRefGoogle Scholar
  91. Siegenthaler PA, Trémolières A (1998) Role of acyl lipids in the function of photosyntheticmembranes in higher plants. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics, series advances in photosynthesis, vol 6. Kluwer Academic Publishers, Dordrecht, pp 145–173CrossRefGoogle Scholar
  92. Silva EA, DaMatta FM, Ducatti C, Regazzi AJ, Barros RS (2004) Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Res 89:349–357CrossRefGoogle Scholar
  93. Smirnoff N (1995) Metabolic flexibility in relation to environment. In: Smirnoff N (ed) Environment and plant metabolism. Flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 1–16Google Scholar
  94. Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen in plants. Blackwell, Oxford, pp 1–24CrossRefGoogle Scholar
  95. Strauss AJ, Krüger GHJ, Strasser RJ, Van Heerden PDR (2007) The role of low soil temperature in the inhibition of growth and PSII function during dark chilling in soybean genotypes of contrasting tolerance. Physiol Plant 131:89–105PubMedCrossRefGoogle Scholar
  96. Torres-Franklin M-L, Gigon A, Melo DF, Zuily-Fodil Y, Pham-Thi A-T (2007) Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Physiol Plant 131:201–210PubMedGoogle Scholar
  97. Uemura M, Joseph RA, Steponkus PL (1995) Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30PubMedCentralPubMedGoogle Scholar
  98. Vijayan P, Routaboul J-M, Okada J (1998) A genetic approach to investigating membrane lipid structure and photosynthetic function. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics, series advances in photosynthesis, vol 6. Kluwer Academic Publishers, Dordrecht, pp 263–285CrossRefGoogle Scholar
  99. Wada H, Gombos Z, Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91:4273–4277PubMedCentralPubMedCrossRefGoogle Scholar
  100. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefGoogle Scholar
  101. Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J-Y, Mi H (2006a) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474PubMedCentralPubMedCrossRefGoogle Scholar
  102. Wang X, Li W, Li M, Welti R (2006b) Profiling lipid changes in response to low temperatures. Physiol Plant 126:90–96CrossRefGoogle Scholar
  103. Webb MS, Green BR (1991) Biochemical and biophysical properties of thylakoid acyl lipids. Biochim Biophys Acta 1060:133–158CrossRefGoogle Scholar
  104. Willson KC (1999) Coffee, cocoa and tea. CAB International, WallingfordGoogle Scholar
  105. Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902CrossRefGoogle Scholar
  106. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803PubMedCrossRefGoogle Scholar
  107. Zhu S-Q, Zhao H, Liang J-S, Ji B-H, Jiao D-M (2008) Relationships between phosphatidylglycerol molecular species of thylakoid membrane lipids and sensitivities to chilling-induced photoinhibition in rice. J Integr Plant Biol 50:194–202PubMedCrossRefGoogle Scholar
  108. Zullo J, Pinto HS, Assad ED, Ávila AMH (2011) Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Clim Change 109:535–548CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • J. C. Ramalho
    • 1
    • 2
  • F. M. DaMatta
    • 3
  • A. P. Rodrigues
    • 4
  • P. Scotti-Campos
    • 5
  • I. Pais
    • 5
  • P. Batista-Santos
    • 1
  • F. L. Partelli
    • 6
  • A. Ribeiro
    • 1
    • 2
  • F. C. Lidon
    • 2
  • A. E. Leitão
    • 1
    • 2
  1. 1.Grupo Interações Planta-Ambiente (PlantStress), Centro de Ambiente, Agricultura e Desenvolvimento (BioTrop)Instituto de Investigação Científica TropicalOeirasPortugal
  2. 2.Departamento Ciências da Terra, Faculdade de Ciências e Tecnologia, CICEGeUniversidade Nova de LisboaMonte de CaparicaPortugal
  3. 3.Dept. Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Instituto Superior de Agronomia/Universidade Técnica de LisboaLisbonPortugal
  5. 5.Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos GenéticosInstituto Nacional de Investigação Agrária e Veterinária (INIAV)OeirasPortugal
  6. 6.Dept. Ciências Agrárias e BiológicasCentro Univ. Norte Espírito Santo Univ.São MateusBrazil

Personalised recommendations