Uric acid in CKD: has the jury come to the verdict?

  • Barbara Bonino
  • Giovanna Leoncini
  • Elisa Russo
  • Roberto Pontremoli
  • Francesca ViazziEmail author


Epidemiological studies show that hyperuricemia independently predicts the development of chronic kidney disease (CKD) in individuals with normal kidney function both in the general population and in subjects with diabetes. As a matter of fact, an unfavorable role of uric acid may somewhat be harder to identify in the context of multiple risk factors and pathogenetic mechanisms typical of overt CKD such as proteinuria and high blood pressure. Although the discrepancy in clinical results could mean that urate lowering treatment does not provide a constant benefit in all patients with hyperuricemia and CKD, we believe that the inconsistency in the results from available meta-analysis is mainly due to inadequate sample size, short follow-up times and heterogeneity in study design characterizing the randomized controlled trials included in the analyses. Therefore, available data support the view that hyperuricemia has a damaging impact on kidney function, while preliminary evidence suggests that treatment of so-called asymptomatic hyperuricemia may be helpful to slow or delay the progression of chronic kidney.


Uric acid Chronic kidney disease Cardiovascular disease Urate lowering treatment 


Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.


  1. 1.
    Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R (2008) Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol 19:2407–2413. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Takae K, Nagata M, Hata J, Mukai N, Hirakawa Y, Yoshida D, Kishimoto H, Tsuruya K, Kitazono T, Kiyohara Y, Ninomiya T (2016) Serum uric acid as a risk factor for chronic kidney disease in a Japanese community—the Hisayama study. Circ J. 80:1857–1862. 2016 Jun 17) CrossRefPubMedGoogle Scholar
  3. 3.
    De Cosmo S, Viazzi F, Pacilli A, Giorda C, Ceriello A, Gentile S, Russo G, Rossi MC, Nicolucci A, Guida P, Feig D, Johnson RJ, Pontremoli R, AMD-Annals Study Group (2015) Serum uric acid and risk of CKD in type 2 diabetes. Clin J Am Soc Nephrol 10:1921–1929. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Storhaug HM, Toft I, Norvik JV, Jenssen T, Eriksen BO, Melsom T, Løchen ML, Solbu MD (2015) Uric acid is associated with microalbuminuria and decreased glomerular filtration rate in the general population during 7 and 13 years of follow-up: the Tromsø study. BMC Nephrol 16:210. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Viazzi F, Russo GT, Ceriello A, Fioretto P, Giorda C, De Cosmo S, Pontremoli R (2019) Natural history and risk factors for diabetic kidney disease in patients with T2D: lessons from the AMD-annals. J Nephrol 32:517–525. CrossRefPubMedGoogle Scholar
  6. 6.
    Toyama T, Furuichi K, Shimizu M, Hara A, Iwata Y, Sakai N, Perkovic V, Kobayashi M, Mano T, Kaneko S, Wada T (2015) Relationship between serum uric acid levels and chronic kidney disease in a Japanese cohort with normal or mildly reduced kidney function. PLoS ONE 10:e0137449. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bravo RC, Gamo MB, Lee HH, Yoon YE, Han WK (2017) Investigating serum uric acid as a risk factor in the development of delayed renal recovery in living kidney donors. Transplant Proc 49:930–934. CrossRefPubMedGoogle Scholar
  8. 8.
    Ceriello A, De Cosmo S, Rossi MC, Lucisano G, Genovese S, Pontremoli R, Fioretto P, Giorda C, Pacilli A, Viazzi F, Russo G, Nicolucci A, AMD-Annals Study Group (2017) Variability in HbA1c, blood pressure, lipid parameters and serum uric acid, and risk of development of chronic kidney disease in type 2 diabetes. Diabetes Obes Metab 19:1570–1578. CrossRefPubMedGoogle Scholar
  9. 9.
    Hanai K, Tauchi E, Nishiwaki Y, Mori T, Yokoyama Y, Uchigata Y, Babazono T (2018) Effects of uric acid on kidney function decline differ depending on baseline kidney function in type 2 diabetic patients. Nephrol Dial Transplant. CrossRefPubMedGoogle Scholar
  10. 10.
    Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW, Collins AJ, Levey AS, Menon V (2009) Uric acid and long-term outcomes in CKD. Am J Kidney Dis 53:796–803. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nacak H, van Diepen M, Qureshi AR, Carrero JJ, Stijnen T, Dekker FW, Evans M (2015) Uric acid is not associated with decline in renal function or time to renal replacement therapy initiation in a referred cohort of patients with stage III, IV and V chronic kidney disease. Nephrol Dial Transplant 30:2039–2045. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu WC, Hung CC, Chen SC, Yeh SM, Lin MY, Chiu YW, Kuo MC, Chang JM, Hwang SJ, Chen HC (2012) Association of hyperuricemia with renal outcomes, cardiovascular disease, and mortality. Clin J Am Soc Nephrol 7:541–548. CrossRefPubMedGoogle Scholar
  13. 13.
    Kalil RS, Carpenter MA, Ivanova A, Gravens-Mueller L, John AA, Weir MR, Pesavento T, Bostom AG, Pfeffer MA, Hunsicker LG (2017) Impact of hyperuricemia on long-term outcomes of kidney transplantation: analysis of the FAVORIT study. Am J Kidney Dis 70:762–769. CrossRefPubMedGoogle Scholar
  14. 14.
    Tsai CW, Lin SY, Kuo CC, Huang CC (2017) Serum uric acid and progression of kidney disease: a longitudinal analysis and mini-review. PLoS ONE 12:e0170393. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Uchida S, Chang WX, Ota T, Tamura Y, Shiraishi T, Kumagai T, Shibata S, Fujigaki Y, Hosoyamada M, Kaneko K, Shen ZY, Fujimori S (2015) Targeting uric acid and the inhibition of progression to end-stage renal disease—a propensity score analysis. PLoS ONE 10:e0145506. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rodenbach KE, Schneider MF, Furth SL, Moxey-Mims MM, Mitsnefes MM, Weaver DJ, Warady BA, Schwartz GJ (2015) Hyperuricemia and progression of CKD in children and adolescents: the chronic kidney disease in children (CKiD) cohort study. Am J Kidney Dis 66:984–992. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim DG, Choi HY, Kim HY, Lee EJ, Huh KH, Kim MS, Nam CM, Kim BS, Kim YS (2018) Association between post-transplant serum uric acid levels and kidney transplantation outcomes. PLoS ONE 13:e0209156. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Akasaka H, Yoshida H, Hanawa N (2014) The impact of elevation of serum uric acid level on the natural history of glomerular filtration rate (GFR) and its sex difference. Nephrol Dial Transplant 29:1932–1939CrossRefGoogle Scholar
  19. 19.
    Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S (2004) Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis 44:642–650CrossRefGoogle Scholar
  20. 20.
    Srivastava A, Kaze AD, McMullan CJ, Isakova T, Waikar SS (2018) Uric acid and the risks of kidney failure and death in individuals with CKD. Am J Kidney Dis 71:362–370. CrossRefPubMedGoogle Scholar
  21. 21.
    Kanda E, Muneyuki T, Kanno Y, Suwa K, Nakajima K (2015) Uric acid level has a U-shaped association with loss of kidney function in healthy people: a prospective cohort study. PLoS ONE 10:e0118031. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chang W, Uchida S, Qi P, Zhang W, Wang X, Liu Y, Han Y, Li J, Xu H, Hao J (2019) Decline in serum uric acid predicts higher risk for mortality in peritoneal dialysis patients—a propensity score analysis. J Nephrol. ahead of print) CrossRefPubMedGoogle Scholar
  23. 23.
    Xu C, Lu A, Lu X, Zhang L, Fang H, Zhou L, Yang T (2017) Activation of renal (Pro)renin receptor contributes to high fructose-induced salt sensitivity. Hypertension 69:339–348. CrossRefPubMedGoogle Scholar
  24. 24.
    Sánchez-Lozada LG, Tapia E, Santamaría J, Avila-Casado C, Soto V, Nepomuceno T, Rodríguez-Iturbe B, Johnson RJ, Herrera-Acosta J (2005) Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 67:237–247CrossRefGoogle Scholar
  25. 25.
    Johnson RJ, Segal MS, Srinivas T, Ejaz A, Mu W, Roncal C, Sánchez-Lozada LG, Gersch M, Rodriguez-Iturbe B, Kang DH, Acosta JH (2015) Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link? J Am Soc Nephrol 16:1909–1919CrossRefGoogle Scholar
  26. 26.
    Liu H, Xiong J, He T, Xiao T, Li Y, Yu Y, Huang Y, Xu X, Huang Y, Zhang J, Zhang B, Zhao J (2017) High uric acid-induced epithelial-mesenchymal transition of renal tubular epithelial cells via the TLR4/NF-kB signaling pathway. Am J Nephrol 46:333–342. CrossRefPubMedGoogle Scholar
  27. 27.
    Bjornstad P, Lanaspa MA, Ishimoto T, Kosugi T, Kume S, Jalal D, Maahs DM, Snell-Bergeon JK, Johnson RJ, Nakagawa T (2015) Fructose and uric acid in diabetic nephropathy. Diabetologia 58:1993–2002. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim SM, Lee SH, Kim YG, Kim SY, Seo JW, Choi YW, Kim DJ, Jeong KH, Lee TW, Ihm CG, Won KY, Moon JY (2015) Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am J Physiol Ren Physiol 308:F993–F1003. CrossRefGoogle Scholar
  29. 29.
    Verzola D, Ratto E, Villaggio B, Parodi EL, Pontremoli R, Garibotto G, Viazzi F (2014) Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4. PLoS ONE 9:e115210. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li Z, Sheng Y, Liu C, Li K, Huang X, Huang J, Xu K (2016) Nox4 has a crucial role in uric acid-induced oxidative stress and apoptosis in renal tubular cells. Mol Med Rep 13:4343–4348. CrossRefPubMedGoogle Scholar
  31. 31.
    Milanesi S, Verzola D, Cappadona F, Bonino B, Murugavel A, Pontremoli R, Garibotto G, Viazzi F (2019) Uric acid and angiotensin II additively promote inflammation and oxidative stress in human proximal tubule cells by activation of toll-like receptor 4. J Cell Physiol 234:10868–10876. CrossRefPubMedGoogle Scholar
  32. 32.
    Roncal CA, Reungjui S, Sánchez-Lozada LG, Mu W, Sautin YY, Nakagawa T, Johnson RJ (2009) Combination of captopril and allopurinol retards fructose-induced metabolic syndrome. Am J Nephrol 30:399–404. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bose B, Badve SV, Hiremath SS, Boudville N, Brown FG, Cass A, de Zoysa JR, Fassett RG, Faull R, Harris DC, Hawley CM, Kanellis J, Palmer SC, Perkovic V, Pascoe EM, Rangan GK, Walker RJ, Walters G, Johnson DW (2014) Effects of uric acid-lowering therapy on renal outcomes: a systematic review and meta-analysis. Nephrol Dial Transplant 29:406–413. CrossRefPubMedGoogle Scholar
  34. 34.
    Kanji T, Gandhi M, Clase CM, Yang R (2015) Urate lowering therapy to improve renal outcomes in patients with chronic kidney disease: systematic review and meta-analysis. BMC Nephrol 16:58. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liu X, Zhai T, Ma R, Luo C, Wang H, Liu L (2018) Effects of uric acid-lowering therapy on the progression of chronic kidney disease: a systematic review and meta-analysis. Ren Fail 40:289–297. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincón A, Arroyo D, Luño J (2010) Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 5:1388–1393. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Goicoechea M, Garcia de Vinuesa S, Verdalles U, Verde E, Macias N, Santos A, Pérez de Jose A, Cedeño S, Linares T, Luño J (2015) Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. Am J Kidney Dis 65:543–549. CrossRefPubMedGoogle Scholar
  38. 38.
    Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, Ito S, Yamamoto T, Tomino Y, Ohno I, Shibagaki Y, Iimuro S, Imai N, Kuwabara M, Hayakawa H, Ohtsu H, Ohashi Y, FEATHER Study Investigators (2018) Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis 72:798–810. CrossRefPubMedGoogle Scholar
  39. 39.
    Kojima S, Matsui K, Hiramitsu S, Hisatome I, Waki M, Uchiyama K, Yokota N, Tokutake E, Wakasa Y, Jinnouchi H, Kakuda H, Hayashi T, Kawai N, Mori H, Sugawara M, Ohya Y, Kimura K, Saito Y, Ogawa H (2019) Febuxostat for cerebral and CaRdiorenovascular Events PrEvEntion StuDy. Eur Heart J 40:1778–1786. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schumacher HR Jr, Becker MA, Wortmann RL, Macdonald PA, Hunt B, Streit J, Lademacher C, Joseph-Ridge N (2008) Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheumatol 59:1540–1548CrossRefGoogle Scholar
  41. 41.
    Becker MA, Schumacher HR Jr, Wortmann RL, MacDonald PA, Eustace D, Palo WA, Streit J, Joseph-Ridge N (2005) Febuxostat compared with allopurinol in patients with hyperuricaemia. N Engl J Med 353:2450–2461CrossRefGoogle Scholar
  42. 42.
    Liu X, Wang H, Ma R, Shao L, Zhang W, Jiang W, Luo C, Zhai T, Xu Y (2019) The urate-lowering efficacy and safety of febuxostat versus allopurinol in Chinese patients with asymptomatic hyperuricemia and with chronic kidney disease stages 3–5. Clin Exp Nephrol 23:362–370. CrossRefPubMedGoogle Scholar
  43. 43.
    Pisano A, Cernaro V, Gembillo G, D’Arrigo G, Buemi M, Bolignano D (2017) Xanthine oxidase inhibitors for improving renal function in chronic kidney disease patients: an updated systematic review and meta-analysis. Int J Mol Sci 18:E2283. CrossRefPubMedGoogle Scholar
  44. 44.
    Wu AH, Gladden JD, Ahmed M, Ahmed A, Filippatos G (2016) Relation of serum uric acid to cardiovascular disease. Int J Cardiol 213:4–7. CrossRefPubMedGoogle Scholar
  45. 45.
    Xia X, Luo Q, Li B, Lin Z, Yu X, Huang F (2016) Serum uric acid and mortality in chronic kidney disease: a systematic review and meta-analysis. Metabolism 65:1326–1341. CrossRefPubMedGoogle Scholar
  46. 46.
    Luo Q, Xia X, Li B, Lin Z, Yu X, Huang F (2019) Serum uric acid and cardiovascular mortality in chronic kidney disease: a meta-analysis. BMC Nephrol 20:18. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Afsar B, Sag AA, Oztosun C, Kuwabara M, Cozzolino M, Covic A, Kanbay M (2019) The role of uric acid in mineral bone disorders in chronic kidney disease. J Nephrol 32:709–717. CrossRefPubMedGoogle Scholar
  48. 48.
    Kao MP, Ang DS, Gandy SJ, Nadir MA, Houston JG, Lang CC, Struthers AD (2011) Allopurinol benefits left ventricular mass and endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol 22:1382–1389. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jalal DI, Decker E, Perrenoud L, Nowak KL, Bispham N, Mehta T, Smits G, You Z, Seals D, Chonchol M, Johnson RJ (2017) Vascular function and uric acid-lowering in stage 3 CKD. J Am Soc Nephrol 28:943–952. CrossRefPubMedGoogle Scholar
  50. 50.
    Smink PA, Bakker SJ, Laverman GD, Berl T, Cooper ME, de Zeeuw D, Lambers Heerspink HJ (2012) An initial reduction in serum uric acid during angiotensin receptor blocker treatment is associated with cardiovascular protection: a post-hoc analysis of the RENAAL and IDNT trials. J Hypertens 30:1022–1028. CrossRefPubMedGoogle Scholar
  51. 51.
    Su X, Xu B, Yan B, Qiao X, Wang L (2017) Effects of uric acid-lowering therapy in patients with chronic kidney disease: a meta-analysis. PLoS ONE 12:e0187550. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, Hunt B, Castillo M, Gunawardhana L, Investigators CARES (2018) Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med 378:1200–1210CrossRefGoogle Scholar
  53. 53.
    Choi H, Neogi T, Stamp L, Dalbeth N, Terkeltaub R (2018) New perspectives in rheumatology: implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities trial and the associated food and drug administration public safety alert. Arthritis Rheumatol 70:1702–1709. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cuenca JA, Balda J, Palacio A, Young L, Pillinger MH, Tamariz L (2019) Febuxostat and cardiovascular events: a systematic review and meta-analysis. Int J Rheumatol 2019:1076189. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I (2018) Authors/Task Force Members: 2018 ESC/ESH guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 36:1953–2041. CrossRefPubMedGoogle Scholar
  56. 56.
    Yamanaka H, Japanese Society of Gout and Nucleic Acid Metabolism (2011) Japanese guideline for the management of hyperuricemia and gout: second edition. Nucleosides Nucleotides Nucleic Acids 30:1018–1029. CrossRefPubMedGoogle Scholar
  57. 57.
    Sato Y, Feig DI, Stack AG, Kang DH, Lanaspa MA, Ejaz AA, Sánchez-Lozada LG, Kuwabara M, Borghi C, Johnson RJ (2019) The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nat Rev Nephrol. CrossRefPubMedGoogle Scholar
  58. 58.
    Afkarian M, Polsky S, Parsa A, Aronson R, Caramori ML, Cherney DZ, Crandall JP, de Boer IH, Elliott TG, Galecki AT, Goldfine AB, Haw JS, Hirsch IB, Karger AB, Lingvay I, Maahs DM, McGill JB, Molitch ME, Perkins BA, Pop-Busui R, Pragnell M, Rosas SE, Rossing P, Senior P, Sigal RJ, Spino C, Tuttle KR, Umpierrez GE, Wallia A, Weinstock RS, Wu C, Mauer M, Doria A, PERL Study Group (2019) Preventing early renal loss in diabetes (PERL) study: a randomized double-blinded trial of allopurinol-rationale, design, and baseline data. Diabetes Care 42:1454–1463. CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Nephrology 2020

Authors and Affiliations

  1. 1.Department of Internal Medicine, Ospedale Policlinico San MartinoUniversity of GenoaGenoaItaly

Personalised recommendations