Journal of Nephrology

, Volume 32, Issue 1, pp 27–37 | Cite as

Microbiota issue in CKD: how promising are gut-targeted approaches?

  • Carmela CosolaEmail author
  • Maria Teresa Rocchetti
  • Alice Sabatino
  • Enrico Fiaccadori
  • Biagio Raffaele Di Iorio
  • Loreto Gesualdo


In chronic kidney disease (CKD), the progressive decline in the renal excretory function leads to accumulation of urea and toxins in the blood. The CKD-associated dysbiosis of gut microbiota further contributes to uremia by increasing intestinal toxins production. Gut microbiota is involved in a complex network of human organs, mediated by microbial metabolites: in CKD, gut–heart and gut–brain axes may have a role in increased cardiovascular risk and neuropsychiatric disorders. While the cardiovascular toxicity of some microbial molecules is well known, their presumptive neurotoxicity needs to be confirmed by specific studies. In this review, we describe gut–heart and gut–brain axes in CKD, with an overview of the experimental and human studies characterizing CKD-associated gut microbiota, and we discuss the benefits coming from new approaches aimed at gut manipulation. Microbiota metabolism is emerging as a modifiable non-traditional risk factor in nephrology. In order to take advantage of this issue, it is necessary to consider the microbiota manipulation as part of the nutritional management of CKD. Integrating the low-protein nutritional approach with prebiotic, probiotic and synbiotic supplementation is a promising tool to control disease progression and comorbidities, though an extensive validation in large-scale clinical trials is still required.


CKD Gut microbiota Uremic toxins Cardiovascular disease Gut–brain axis Nutrition 



This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.


  1. 1.
    Evenepoel P, Meijers BK, Bammens BR, Verbeke K (2009) Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl.(114):S12–S129. Google Scholar
  2. 2.
    Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315. Google Scholar
  3. 3.
    Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND (2014) Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 39(3):230–237. Google Scholar
  4. 4.
    Montemurno E, Cosola C, Dalfino G, Daidone G, De Angelis M, Gobbetti M, Gesualdo L (2014) What would you like to eat, Mr CKD microbiota? A Mediterranean diet. Kidney Blood Press Res 39(2–3):114–123. Google Scholar
  5. 5.
    Sirich TL, Funk BA, Plummer NS, Hostetter TH, Meyer TW (2014) Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. J Am Soc Nephrol 25(3):615–622. Google Scholar
  6. 6.
    Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, Niwa T (2012) Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal Bioanal Chem 403(7):1841–1850. Google Scholar
  7. 7.
    Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G (2014) The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol 25(9):1897–1907. Google Scholar
  8. 8.
    Cosola C, Rocchetti MT, Cupisti A, Gesualdo L (2018) Microbiota metabolites: pivotal players of cardiovascular damage in chronic kidney disease. Pharmacol Res. Google Scholar
  9. 9.
    Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116(3):448–455. Google Scholar
  10. 10.
    Hai X, Landeras V, Dobre MA, DeOreo P, Meyer TW, Hostetter TH (2015) Mechanism of prominent trimethylamine oxide (TMAO) accumulation in hemodialysis patients. PLoS One 10(12):e0143731. Google Scholar
  11. 11.
    Di Iorio BR, Marzocco S, Bellasi A, De Simone E, Dal Piaz F, Rocchetti MT, Cosola C, Di Micco L, Gesualdo L (2017) Nutritional therapy reduces protein carbamylation through urea lowering in chronic kidney disease. Nephrol Dial Transplant. Google Scholar
  12. 12.
    Vaziri ND, Yuan J, Norris K (2013) Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 37(1):1–6. Google Scholar
  13. 13.
    D’Apolito M, Du X, Zong H, Catucci A, Maiuri L, Trivisano T, Pettoello-Mantovani M, Campanozzi A, Raia V, Pessin JE, Brownlee M, Giardino I (2010) Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure. J Clin Investig 120(1):203–213. Google Scholar
  14. 14.
    El-Gamal D, Rao SP, Holzer M, Hallström S, Haybaeck J, Gauster M, Wadsack C, Kozina A, Frank S, Schicho R, Schuligoi R, Heinemann A, Marsche G (2014) The urea decomposition product cyanate promotes endothelial dysfunction. Kidney Int 86(5):923–931. Google Scholar
  15. 15.
    Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T, Koga Y (1996) Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74:349–355. Google Scholar
  16. 16.
    Jiang S, Xie S, Lv D, Zhang Y, Deng J, Zeng L, Chen Y (2016) A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie Van Leeuwenhoek 109(10):1389–1396. Google Scholar
  17. 17.
    Xu KY, Xia GH, Lu JQ, Chen MX, Zhen X, Wang S, You C, Nie J, Zhou HW, Yin J (2017) Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep 7(1):1445. Google Scholar
  18. 18.
    De Angelis M, Montemurno E, Piccolo M, Vannini L, Lauriero G, Maranzano V, Gozzi G, Serrazanetti D, Dalfino G, Gobbetti M, Gesualdo L (2014) Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS One 9(6):e99006. Google Scholar
  19. 19.
    Piccolo M, De Angelis M, Lauriero G, Montemurno E, Di Cagno R, Gesualdo L, Gobbetti M (2015) Salivary microbiota associated with immunoglobulin A nephropathy. Microb Ecol 70(2):557–565. Google Scholar
  20. 20.
    Sabatino A, Regolisti G, Cosola C, Gesualdo L, Fiaccadori E (2017) Intestinal microbiota in type 2 diabetes and chronic kidney disease. Curr Diabetes Rep 17(3):16. Google Scholar
  21. 21.
    Wang F, Jiang H, Shi K, Ren Y, Zhang P, Cheng S (2012) Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology (Carlton) 17(8):733–738. Google Scholar
  22. 22.
    Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, Kumar Vr S, Kulkarni OP, Mulay SR, Romoli S, Demleitner J, Schiller P, Dietrich A, Müller S, Gross O, Ruscheweyh HJ, Huson DH, Stecher B, Anders HJ (2017) Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol 28(1):76–83. Google Scholar
  23. 23.
    Viggiano D, Ianiro G, Vanella G, Bibbò S, Bruno G, Simeone G, Mele G (2015) Gut barrier in health and disease: focus on childhood. Eur Rev Med Pharmacol Sci 19(6):1077–1085Google Scholar
  24. 24.
    Mishima E, Fukuda S, Shima H, Hirayama A, Akiyama Y, Takeuchi Y, Fukuda NN, Suzuki T, Suzuki C, Yuri A, Kikuchi K, Tomioka Y, Ito S, Soga T, Abe T (2015) Alteration of the intestinal environment by lubiprostone is associated with amelioration of adenine-induced CKD. J Am Soc Nephrol 26(8):1787–1794. Google Scholar
  25. 25.
    Yoshifuji A, Wakino S, Irie J, Tajima T, Hasegawa K, Kanda T, Tokuyama H, Hayashi K, Itoh H (2016) Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol Dial Transplant 31(3):401–412. Google Scholar
  26. 26.
    Zeng YQ, Dai Z, Lu F, Lu Z, Liu X, Chen C, Qu P, Li D, Hua Z, Qu Y, Zou C (2016) Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease. Oncotarget 7(14):17468–17478. Google Scholar
  27. 27.
    Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ, Kheradman R, Heuman D, Wang J, Gurry T, Williams R, Sikaroodi M, Fuchs M, Alm E, John B, Thacker LR, Riva A, Smith M, Taylor-Robinson SD, Gillevet PM (2017) Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66(6):1727–1738. Google Scholar
  28. 28.
    Qureshi AR, Alvestrand A, Divino-Filho JC, Gutierrez A, Heimbürger O, Lindholm B, Bergström J (2002) Inflammation, malnutrition, and cardiac disease as predictors of mortality in hemodialysis patients. J Am Soc Nephrol 13(Suppl 1):S28–S36Google Scholar
  29. 29.
    Lin CJ, Wu V, Wu PC, Wu CJ (2015) Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS One 10(7):1–14. Google Scholar
  30. 30.
    Adijiang A, Goto S, Uramoto S, Nishijima F, Niwa T (2008) Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol Dial Transplant 23(6):1892–1901. Google Scholar
  31. 31.
    Shimizu H, Bolati D, Adijiang A, Enomoto A, Nishijima F, Dateki M, Niwa T (2010) Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate. Am J Physiol 299(5):C1110–C1117. Google Scholar
  32. 32.
    Sun CY, Chang SC, Wu MS (2012) Uremic toxins induce kidney fibrosis by activating intrarenal renin–angiotensin–aldosterone system associated epithelial-to-mesenchymal transition. PLoS One 7(3):e34026. Google Scholar
  33. 33.
    Shafi T, Sirich TL, Meyer TW, Hostetter TH, Plummer NS, Hwang S, Melamed ML, Banerjee T, Coresh J, Powe NR (2017) Results of the HEMO study suggest that p-cresol sulfate and indoxyl sulfate are not associated with cardiovascular outcomes. Kidney Int 92(6):1484–1492. Google Scholar
  34. 34.
    Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L (2017) Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. Google Scholar
  35. 35.
    Rieder R, Wisniewski PJ, Alderman BL, Campbell SC (2017) Microbes and mental health: a review. Brain Behav Immun 66:9–17. Google Scholar
  36. 36.
    Lopes AA, Bragg J, Young E, Goodkin D, Mapes D, Combe C, Piera L, Held P, Gillespie B, Port FK, Dialysis Outcomes and Practice Patterns Study (DOPPS) (2002) Depression as a predictor of mortality and hospitalization among hemodialysis patients in the United States and Europe. Kidney Int 62(1):199–207. Google Scholar
  37. 37.
    Chilcot J, Wellsted D, Da Silva-Gane M, Farrington K (2008) Depression on dialysis. Nephron Clin Pract 108(4):c256–64. Google Scholar
  38. 38.
    Taraz M, Taraz S, Dashti-Khavidaki S (2015) Association between depression and inflammatory/anti-inflammatory cytokines in chronic kidney disease and end-stage renal disease patients: a review of literature. Hemodial Int 19(1):11–22. Google Scholar
  39. 39.
    Karu N, Mckercher C, Nichols DS, Davies N, Shellie RA, Hilder EF, Jose MD (2016) Tryptophan metabolism, its relation to inflammation and stress markers and association with psychological and cognitive functioning: Tasmanian chronic kidney disease pilot study. BMC Nephrol 17(1):171. Google Scholar
  40. 40.
    Schwarcz R, Stone TW (2017) The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology 112(Pt B):237–247. Google Scholar
  41. 41.
    Hsu HJ, Yen CH, Chen CK, Wu IW, Lee CC, Sun CY, Chang SJ, Chou CC, Hsieh MF, Chen CY, Hsu CY, Tsai CJ, Wu MS (2013) Association between uremic toxins and depression in patients with chronic kidney disease undergoing maintenance hemodialysis. Gen Hosp Psychiatry 35(1):23–27. Google Scholar
  42. 42.
    Yeh YC, Huang MF, Liang SS, Hwang SJ, Tsai JC, Liu TL, Wu PH, Yang YH, Kuo KC, Kuo MC, Chen CS (2016) Indoxyl sulfate, not p-cresyl sulfate, is associated with cognitive impairment in early-stage chronic kidney disease. Neurotoxicology 53:148–152. Google Scholar
  43. 43.
    Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya K, Otagiri M, Terasaki T (2002) Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem 83(1):57–66Google Scholar
  44. 44.
    Iwata K, Watanabe H, Morisaki T, Matsuzaki T, Ohmura T, Hamada A, Saito H (2007) Involvement of indoxyl sulfate in renal and central nervous system toxicities during cisplatin-induced acute renal failure. Pharm Res 24(4):662–671. Google Scholar
  45. 45.
    Oshima N, Onimaru H, Matsubara H, Uchida T, Watanabe A, Takechi H, Nishida Y, Kumagai H (2015) Uric acid, indoxyl sulfate, and methylguanidine activate bulbospinal neurons in the RVLM via their specific transporters and by producing oxidative stress. Neuroscience 304:133–145. Google Scholar
  46. 46.
    Mogi M, Horiuchi M (2011) Clinical interaction between brain and kidney in small vessel disease. Cardiol Res Pract. Google Scholar
  47. 47.
    Piccoli GB, Capizzi I, Vigotti FN, Leone F, D’Alessandro C, Giuffrida D, Nazha M, Roggero S, Colombi N, Mauro G, Castelluccia N, Cupisti A, Avagnina P (2016) Low protein diets in patients with chronic kidney disease: a bridge between mainstream and complementary-alternative medicines? BMC Nephrol 17(1):76. Google Scholar
  48. 48.
    Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307(11):652–659. Google Scholar
  49. 49.
    Di Iorio BR, Minutolo R, De Nicola L, Bellizzi V, Catapano F, Iodice C, Rubino R, Conte G (2003) Supplemented very low protein diet ameliorates responsiveness to erythropoietin in chronic renal failure. Kidney Int 64(5):1822–1828. Google Scholar
  50. 50.
    Bellizzi V, Di Iorio BR, De Nicola L, Minutolo R, Zamboli P, Trucillo P, Catapano F, Cristofano C, Scalfi L, Conte G, ERIKA Study-Group (2007) Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int 71(3):245–251. Google Scholar
  51. 51.
    Cianciaruso B, Pota A, Pisani A, Torraca S, Annecchini R, Lombardi P, Capuano A, Nazzaro P, Bellizzi V, Sabbatini M (2008) Metabolic effects of two low protein diets in chronic kidney disease stage 4–5 a randomized controlled trial. Nephrol Dial Transplant 23(2):636–644. Google Scholar
  52. 52.
    Fouque D, Laville M (2009) Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst Rev 3:CD001892. Google Scholar
  53. 53.
    Brunori G, Viola BF, Parrinello G, De Biase V, Como G, Franco V, Garibotto G, Zubani R, Cancarini GC (2007) Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: a prospective randomized multicenter controlled study. Am J Kidney Dis 49(5):569–580. Google Scholar
  54. 54.
    Ranganathan N, Ranganathan P, Friedman EA, Joseph A, Delano B, Goldfarb DS, Tam P, Rao AV, Anteyi E, Musso CG (2010) Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther 27(9):634–647. Google Scholar
  55. 55.
    Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435. Google Scholar
  56. 56.
    Bliss DZ, Stein TP, Schleifer CR, Settle RG (1996) Supplementation with gum arabic fiber increases fecal nitrogen excretion and lowers serum urea nitrogen concentration in chronic renal failure patients consuming a low-protein diet. Am J Clin Nutr 63:392–398Google Scholar
  57. 57.
    Meijers BKI, De Preter V, Verbeke K, Vanrenterghem Y, Evenepoel P (2010) p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 25:219–224. Google Scholar
  58. 58.
    Rossi M, Johnson DW, Xu H, Carrero JJ, Pascoe E, French C, Campbell KL (2015) Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr Metab Cardiovasc Dis 25(9):860–865. Google Scholar
  59. 59.
    Cosola C, De Angelis M, Rocchetti MT, Montemurno E, Maranzano V, Dalfino G, Manno C, Zito A, Gesualdo M, Ciccone MM, Gobbetti M, Gesualdo L (2017) Beta-glucans supplementation associates with reduction in p-cresyl sulfate levels and improved endothelial vascular reactivity in healthy individuals. PLoS One 12(1):e0169635. Google Scholar
  60. 60.
    De Angelis M, Montemurno E, Vannini L, Cosola C, Cavallo N, Gozzi G, Maranzano V, Di Cagno R, Gobbetti M, Gesualdo L (2015) Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl Environ Microbiol 81(22):7945–7956. Google Scholar
  61. 61.
    Salmean YA, Segal MS, Langkamp-Henken B, Canales MT, Zello GA, Dahl WJ (2013) Foods with added fiber lower serum creatinine levels in patients with chronic kidney disease. J Ren Nutr 23:e29–e32. Google Scholar
  62. 62.
    Taki K, Takayama F, Niwa T (2005) Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J Ren Nutr 15:77–80Google Scholar
  63. 63.
    Ogawa T, Shimada M, Nagano N, Ito K, Ando T, Shimomura Y, Ando Y, Otsuka K (2012) Oral administration of Bifidobacterium longum in a gastro-resistant seamless capsule decreases serum phosphate levels in patients receiving haemodialysis. Clin Kidney J 5:373–374. Google Scholar
  64. 64.
    Wang IK, Wu YY, Yang YF, Ting IW, Lin CC, Yen TH, Chen JH, Wang CH, Huang CC, Lin HC (2015) The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef Microbes 6(4):423–430. Google Scholar
  65. 65.
    Soleimani A, Zarrati Mojarrad M, Bahmani F, Taghizadeh M, Ramezani M, Tajabadi-Ebrahimi M, Jafari P, Esmaillzadeh A, Asemi Z (2017) Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects. Kidney Int 91(2):435–442. Google Scholar
  66. 66.
    Cupisti A, D’Alessandro C, Gesualdo L, Cosola C, Gallieni M, Egidi MF, Fusaro M (2017) Non-traditional aspects of renal diets: focus on fiber, alkali and vitamin K1 intake. Nutrients. Google Scholar
  67. 67.
    Poesen R, Windey K, Neven E, Kuypers D, De Preter V, Augustijns P, D’Haese P, Evenepoel P, Verbeke K, Meijers B (2016) The influence of CKD on colonic microbial metabolism. J Am Soc Nephrol 27(5):1389–1399. Google Scholar
  68. 68.
    Marzocco S, Dal Piaz F, Di Micco L, Torraca S, Sirico ML, Tartaglia D, Autore G, Di Iorio B (2013) Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif 35(1–3):196–201. Google Scholar
  69. 69.
    Black AP, Anjos JS, Cardozo L, Carmo FL, Dolenga CJ, Nakao LS, de Carvalho Ferreira D, Rosado A, Carraro Eduardo JC, Mafra D (2018) Does low-protein diet influence the uremic toxin serum levels from the gut microbiota in nondialysis chronic kidney disease patients? J Ren Nutr. Google Scholar
  70. 70.
    Cupisti A, Brunori G, Di Iorio BR, D’Alessandro C, Pasticci F, Cosola C, Bellizzi V, Bolasco P, Capitanini A, Fantuzzi AL, Gennari A, Piccoli GB, Quintaliani G, Salomone M, Sandrini M, Santoro D, Babini P, Fiaccadori E, Gambaro G, Garibotto G, Gregorini M, Mandreoli M, Minutolo R, Cancarini G, Conte G, Locatelli F, Gesualdo L (2018) Nutritional treatment of advanced CKD: twenty consensus statements. J Nephrol. Google Scholar

Copyright information

© Italian Society of Nephrology 2018

Authors and Affiliations

  1. 1.Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
  2. 2.Renal Unit, Department of Clinical and Experimental MedicineParma University Medical SchoolParmaItaly
  3. 3.Division of NephrologyA. Landolfi HospitalSolofraItaly

Personalised recommendations