Journal of Nephrology

, Volume 32, Issue 2, pp 231–239 | Cite as

Sodium removal by peritoneal dialysis: a systematic review and meta-analysis

  • Silvio BorrelliEmail author
  • Vincenzo La Milia
  • Luca De Nicola
  • Gianfranca Cabiddu
  • Roberto Russo
  • Michele Provenzano
  • Roberto Minutolo
  • Giuseppe Conte
  • Carlo Garofalo
  • On behalf of Study group Peritoneal Dialysis of Italian Society of Nephrology


Achievement of sodium and fluid balance is considered a major determinant of dialysis adequacy in peritoneal dialysis (PD). However, the contribution of different PD modalities to dialytic sodium removal (DSR) remains ill-defined. We performed a systematic review and meta-analysis to compare DSR by manual (continuous ambulatory PD, CAPD) versus automated PD (APD). Alternative PD strategies to remove sodium were also analyzed. Seven cohort studies, including 683 patients, 406 in CAPD and 277 in APD, were meta-analyzed out of the 30 studies selected based on DSR data availability. Overall, the unstandardized mean difference between CAPD and APD was significant [− 56 mmol/day (95% CI − 106, − 6), p = 0.027]. Heterogeneity was high (I2 87.2%; p < 0.001). Meta-regression showed a strict correlation of DSR difference with creatinine dialysate/plasma ratio (D/P) (p = 0.04). DSR was significantly lower in APD than CAPD [86.2 (57.3–115.1) vs. 141.3 (107.6–174.9) mmol/day, p = 0.015]. Conversely, ultrafiltration (UF) did not differ [1122.6 (891.2–1354.0) in CAPD and 893.6 (823.0–964.2) ml/day in APD, p = 0.064]. A very strong correlation between DSR and achieved UF was found in CAPD (R = 0.94; p < 0001) while no relationship was detected in APD (R = − 0.07; p = 0.85). CAPD allows a higher DSR than APD, even though UF is not different. APD removes more water than sodium; therefore, DSR should be measured rather than estimated from the achieved UF. The difference in DSR between the two modalities decreases in high transporters. Novel strategies proposed to increase DSR, e.g. lower sodium dialysate or adapted-APD, are promising, but ad hoc studies are necessary.


Sodium removal Ultrafiltration Peritoneal dialysis 


Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

40620_2018_507_MOESM1_ESM.pdf (157 kb)
Supplementary material 1 (PDF 157 KB)
40620_2018_507_MOESM2_ESM.pdf (13 kb)
Supplementary material 2 (PDF 13 KB)


  1. 1.
    Van Biesen W, Williams JD, Covic AC et al for the EuroBCM Study Group (2011) Fluid status in peritoneal dialysis patients: the European Body Composition Monitoring (EuroBCM) study cohort. PLoS One 6:e17148CrossRefGoogle Scholar
  2. 2.
    Paniagua R, Ventura MD, Avila-Diaz M et al (2010) NT-proBNP, fluid volume overload and dialysis modality are independent predictors of mortality in ESRD patients. Nephrol Dial Transplant 25:551–557CrossRefGoogle Scholar
  3. 3.
    Enia G, Mallamaci F, Benedetto FA et al (2001) The Long-term CAPD patients are volume expanded and display more severe left ventricular hypertrophy than hemodialysis patients. Nephrol Dial Transplant 16(7):1459–1464CrossRefGoogle Scholar
  4. 4.
    Van Biesen W, Heimburger O, Krediet R et al (2010) Evaluation of peritoneal membrane characteristics: clinical advice for prescription management by the ERBP working group. Nephrol Dial Transplant 25:2052–2062CrossRefGoogle Scholar
  5. 5.
    Ates K, Nergizoglu G, Keven K et al (2001) Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int 60:767–776CrossRefGoogle Scholar
  6. 6.
    Brown EA, Davies SJ, Rutherford P et al, for the EAPOS Group (2003) Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J Am Soc Nephrol 14:2948–2957CrossRefGoogle Scholar
  7. 7.
    Lo WK, Ho YW, Li CS et al (2003) Effect of Kt/V on survival and clinical outcome in CAPD patients in a randomized prospective study. Kidney Int 64:649–656CrossRefGoogle Scholar
  8. 8.
    Paniagua R, Amato D, Vonesh E et al, for the Mexican Nephrology Collaborative Study Group (2002) Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 13:1307–1320Google Scholar
  9. 9.
    Eknoyan G, Beck GJ, Cheung AK, Hemodialysis (HEMO) Study Group (2002) Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med 347(25):2010–2019CrossRefGoogle Scholar
  10. 10.
    Heimbürger O, Wanieski J, Werynski A, Tranæus A, Lindholm B (1990) Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 38:495–506CrossRefGoogle Scholar
  11. 11.
    Churchill DN, Thorpe KE, Nolph KD et al, for the CANUSA Study Group (1998) Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. J Am Soc Nephrol 9:1285–1292Google Scholar
  12. 12.
    Davies SJ (2004) Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int 66(6):2437–2445CrossRefGoogle Scholar
  13. 13.
    Mujais S, Nolph K, Gokal R et al (2000) Evaluation and management of ultrafiltration problems in peritoneal dialysis. International Society for peritoneal dialysis ad hoc committee on ultrafiltration management in peritoneal dialysis. Perit Dial Int 20(Suppl 4):S5–S21Google Scholar
  14. 14.
    Twardowski ZJ, Nolph KD, Khanna R et al (1987) Peritoneal equilibration test. Perit Dial Bull 7(3):138–147Google Scholar
  15. 15.
    Wang T, Waniewski J, Heimbürger O, Werynski A, Lindholm B (1997) A quantitative analysis of sodium transport and removal during peritoneal dialysis. Kidney Int 52(6):1609–1616CrossRefGoogle Scholar
  16. 16.
    Struijk DG, Krediet RT (2000) Sodium balance in automated peritoneal dialysis. Perit Dial Int 20(Suppl 2):S101–S105Google Scholar
  17. 17.
    Vychytil A, Hörl WH (2006) The role of tidal peritoneal dialysis in modern practice: a European perspective. Kidney Int 103:S96–S103CrossRefGoogle Scholar
  18. 18.
    Qi H, Xu C, Yan H, Ma J (2011) Comparison of icodextrin and glucose solutions for long dwell exchange in peritoneal dialysis: a meta-analysis of randomized controlled trials. Perit Dial Int 31(2):179–188Google Scholar
  19. 19.
    Ortega O, Gallar P, Carreño A et al (2001) Peritoneal sodium mass removal in continuous ambulatory peritoneal dialysis and automated peritoneal dialysis: influence on blood pressure control. Am J Nephrol 21(3):189–193CrossRefGoogle Scholar
  20. 20.
    Rodríguez-Carmona A, Fontán MP (2002) Sodium removal in patients undergoing CAPD and automated peritoneal dialysis. Perit Dial Int 22(6):705–713Google Scholar
  21. 21.
    Rodriguez-Carmona A, Pérez-Fontán M, Garca-Naveiro R, Villaverde P, Peteiro J (2004) Compared time profiles of ultrafiltration, sodium removal, and renal function in incident CAPD and automated peritoneal dialysis patients. Am J Kidney Dis 44(1):132–145CrossRefGoogle Scholar
  22. 22.
    Fourtounas C, Hardalias A, Dousdampanis P et al (2008) Sodium removal in peritoneal dialysis: the role of icodextrin and peritoneal dialysis modalities. Adv Perit Dial 24:27–31Google Scholar
  23. 23.
    Davison SN, Jhangri GS, Jindal K, Pannu N (2009) Comparison of volume overload with cycler-assisted versus continuous ambulatory peritoneal dialysis. Clin J Am Soc Nephrol 4(6):1044–1050CrossRefGoogle Scholar
  24. 24.
    Cnossen TT, Konings CJ, Fagel WJ et al (2012) Fluid state and blood pressure control: no differences between APD and CAPD. ASAIO J 58(2):132–136Google Scholar
  25. 25.
    Fourtounas C, Dousdampanis P, Hardalias A, Vlachojannis JG (2013) Sodium removal and peritoneal dialysis modalities: no differences with optimal prescription of icodextrin. Artif Organs 37(7):E107–E113CrossRefGoogle Scholar
  26. 26.
    Moor V, Wagner R, Sayer M, Petsch M, Rueb S, Häring HU, Heyne N, Artunc F (2017) Routine monitoring of sodium and phosphorus removal in peritoneal dialysis (PD) Patients treated with continuous ambulatory PD (CAPD), automated PD (APD) or combined CAPD + APD. Kidney Blood Press Res 42(2):257–266CrossRefGoogle Scholar
  27. 27.
    Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–2012CrossRefGoogle Scholar
  28. 28.
    Wells G, Shea B, O’Connell D et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Ottawa Health Research Institute. Accessed 17 Feb 2014
  29. 29.
    Hartung J, Knapp G (2008) Statistical meta-analysis with applications. Wiley, New YorkCrossRefGoogle Scholar
  30. 30.
    Tobias A (1999) Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull 8:15–17Google Scholar
  31. 31.
    Van Houwelingen HC, Arends LR, Stijnen T (2002) Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 21:589–624CrossRefGoogle Scholar
  32. 32.
    Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101CrossRefGoogle Scholar
  33. 33.
    Cheng LT, Wang T (2006) Changes in total sodium intake do not lead to proportionate changes in total sodium removal in CAPD patients. Perit Dial Int 26(2):218–223Google Scholar
  34. 34.
    Cheng LT, Chen W, Tang W, Wang T (2006) Residual renal function and volume control in peritoneal dialysis patients. Nephron Clin Pract 104(1):c47–54CrossRefGoogle Scholar
  35. 35.
    Chen W, Cheng LT, Wang T (2007) Salt and fluid intake in the development of hypertension in peritoneal dialysis patients. Ren Fail 29(4):427–432CrossRefGoogle Scholar
  36. 36.
    Dong J, Li Y, Yang Z, Luo J (2010) Low dietary sodium intake increases the death risk in peritoneal dialysis. Clin J Am Soc Nephrol 5(2):240–247CrossRefGoogle Scholar
  37. 37.
    Shan YS, Ding XQ, Ji J, Lv WL, Cao XS, Zhong YH (2011) Clinical factors associated with sodium removal in peritoneal dialysis patients. J Int Med Res 39(5):1883–1889CrossRefGoogle Scholar
  38. 38.
    Dong J, Li Y, Yang Z, Luo J, Zuo L (2011) Time-dependent associations between total sodium removal and mortality in patients on peritoneal dialysis. Perit Dial Int 31(4):412–421CrossRefGoogle Scholar
  39. 39.
    Inal S, Erten Y, Akbulu G, Oneç K et al (2012) Salt intake and hypervolemia in the development of hypertension in peritoneal dialysis patients. Adv Perit Dial 28:10–15Google Scholar
  40. 40.
    Shan Y, Xu F, Sun M, Ji J, Ding X (2014) A comparison between residual renal function and peritoneal clearance for Na/H2O and urea removal in peritoneal dialysis patients. Ren Fail Aug;36(7):1008–1012CrossRefGoogle Scholar
  41. 41.
    Aanen MC, Venturoli D, Davies SJ (2005) A detailed analysis of sodium removal by peritoneal dialysis: comparison with predictions from the three-pore model of membrane function. Nephrol Dial Transplant 20(6):1192–1200CrossRefGoogle Scholar
  42. 42.
    Avila-Díaz M, Ventura MD, Valle D et al (2006) Inflammation and extracellular volume expansion are related to sodium and water removal in patients on peritoneal dialysis. Perit Dial Int 26(5):574–580Google Scholar
  43. 43.
    Plum J, Gentile S, Verger C et al (2002) Efficacy and safety of a 7.5% icodextrin peritoneal dialysis solution in patients treated with automated peritoneal dialysis. Am J Kidney Dis 39(4):862–871CrossRefGoogle Scholar
  44. 44.
    Boudville NC, Cordy P, Millman K, Fairbairn L, Sharma A, Lindsay R, Blake PG (2007) Blood pressure, volume, and sodium control in an automated peritoneal dialysis population. Perit Dial Int 27(5):537–543Google Scholar
  45. 45.
    Vega-Diaz N, Gonzalez-Cabrera F, Marrero-Robayna S et al (2015) Renal replacement therapy: purifying efficiency of automated peritoneal dialysis in diabetic versus non-diabetic patients. J Clin Med 4(7):1518–1535CrossRefGoogle Scholar
  46. 46.
    Perez RA, Blake PG, McMurray S, Mupas L, Oreopoulos DG (2000) What is the optimal frequency of cycling in automated peritoneal dialysis? Perit Dial Int 20(5):548–556Google Scholar
  47. 47.
    Amici G (2000) Solute kinetics in automated peritoneal dialysis. Perit Dial Int 20(Suppl 2):S77–S82Google Scholar
  48. 48.
    Vychytil A, Lilaj T, Schneider B et al (1999) Tidal peritoneal dialysis for home-treated patients: should it be preferred? Am J Kidney Dis 33:334–343CrossRefGoogle Scholar
  49. 49.
    Demetriou D, Habicht A, Schillinger M, Hörl WH, Vychytil A (2006) Adequacy of automated peritoneal dialysis with and without manual daytime exchange: a randomized controlled trial. Kidney Int 70(9):1649–1655CrossRefGoogle Scholar
  50. 50.
    Domenici A, Scabbia L, Sivo F, Falcone C, Punzo G, Menè P (2012) Determinants of sodium removal with tidal automated peritoneal dialysis. Adv Perit Dial 28:16–20Google Scholar
  51. 51.
    Domenici A, Giuliani A, Sivo F et al (2016) Cross-over efficiency comparison of different tidal automated peritoneal dialysis schedules. Blood Purif 42(4):287–293CrossRefGoogle Scholar
  52. 52.
    Fischbach M, Issad B, Dubois V, Taamma R (2011) The beneficial influence on the effectiveness of automated peritoneal dialysis of varying the dwell time (short/long) and fill volume (small/large): a randomized controlled trial. Perit Dial Int 31(4):450–458CrossRefGoogle Scholar
  53. 53.
    Fischbach M, Zaloszyc A, Schaefer B, Schmitt CP (2017) Should sodium removal in peritoneal dialysis be estimated from the ultrafiltration volume? Pediatr Nephrol 32(3):419–424CrossRefGoogle Scholar
  54. 54.
    Fischbach M, Schmitt CP, Shroff R, Zaloszyc A, Warady BA (2016) Increasing sodium removal on peritoneal dialysis: applying dialysis mechanics to the peritoneal dialysis prescription. Kidney Int 89(4):761–766CrossRefGoogle Scholar
  55. 55.
    Davies S, Carlsson O, Simonsen O et al (2009) The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrol Dial Transplant 24(5):1609–1617CrossRefGoogle Scholar
  56. 56.
    Rutkowski B, Tam P, van der Sande FM et al, Low Sodium Balance Study Group (2016) Low-sodium versus standard-sodium peritoneal dialysis solution in hypertensive patients: a randomized controlled trial. Am J Kidney Dis 67(5):753–761CrossRefGoogle Scholar
  57. 57.
    Freida P, Issad B, Dratwa M, Lobbedez T, Wu L, Leypoldt JK, Divino-Filho JC (2009 Jul-Aug) A combined crystalloid and colloid PD solution as a glucose-sparing strategy for volume control in high-transport APD patients: a prospective multicenter study. Perit Dial Int 29(4):433–442Google Scholar
  58. 58.
    Freida P, Galach M, Divino Filho JC, Werynski A, Lindholm B (2007) Combination of crystalloid (glucose) and colloid (icodextrin) osmotic agents markedly enhances peritoneal fluid and solute transport during the long PD dwell. Perit Dial Int 27(3):267–276Google Scholar
  59. 59.
    Freida P, Wilkie M, Jenkins S, Dallas F, Issad B (2008) The contribution of combined crystalloid and colloid osmosis to fluid and sodium management in peritoneal dialysis. Kidney Int 73(Suppl 108):S102–S111CrossRefGoogle Scholar
  60. 60.
    La Milia V, Di Filippo S, Crepaldi M, Andrulli S, Marai P, Bacchini G et al (2000) Spurious estimations of sodium removal during CAPD when [Na](+) is measured by Na electrode methodology. Kidney Int 58:2194–2199CrossRefGoogle Scholar
  61. 61.
    La Milia V, Di Filippo S, Crepaldi M, Andrulli S, Del Vecchio L, Scaravilli P, Virga G, Locatelli F (2004) Sodium removal and sodium concentration during peritoneal dialysis: effects of three methods of sodium measurement. Nephrol Dial Transplant 19(7):1849–1855CrossRefGoogle Scholar
  62. 62.
    La Milia V, Pozzoni P, Crepaldi M, Locatelli F (2006) Overfill of peritoneal dialysis bags as a cause of underestimation of ultrafiltration failure. Perit Dial Int 26(4):503–505Google Scholar

Copyright information

© Italian Society of Nephrology 2018

Authors and Affiliations

  • Silvio Borrelli
    • 1
    Email author
  • Vincenzo La Milia
    • 2
  • Luca De Nicola
    • 1
  • Gianfranca Cabiddu
    • 3
  • Roberto Russo
    • 4
  • Michele Provenzano
    • 1
  • Roberto Minutolo
    • 1
  • Giuseppe Conte
    • 1
  • Carlo Garofalo
    • 1
  • On behalf of Study group Peritoneal Dialysis of Italian Society of Nephrology
  1. 1.Department of NephrologyUniversity of Campania “Luigi Vanvitelli”NaplesItaly
  2. 2.Department of Nephrology and DialysisE. Bassini HospitalMilanItaly
  3. 3.Department of Nephrology and DialysisG. Brotzu HospitalCagliariItaly
  4. 4.Department of Nephrology and DialysisPoliclinico di BariBariItaly

Personalised recommendations