Journal of Nephrology

, Volume 31, Issue 4, pp 613–620 | Cite as

Assessment of physical performance and body composition in male renal transplant patients

  • Andrea Petronio Rossi
  • Gianluigi ZazaEmail author
  • Marina Zanardo
  • Francesco Pedelini
  • Laura Dalla Verde
  • Chiara Caletti
  • Alessia D’Introno
  • Antonio Lupo
  • Mauro Zamboni
Original Article



Renal transplant (RTX) recipients seem to experience a better quality of life compared to dialysis patients. However, the factors responsible for this positive effect are not completely defined. Conceivably, a change in the physical performance of these patients could play a role.


To assess this, we measured: (1) waist circumference, fat mass and appendicular fat-free mass (aFFM) by dual-energy X-ray densitometry, (2) physical performance with the Short Physical Performance Battery, and (3) muscle strength with the handgrip test, in 59 male RTX, 11 chronic kidney disease in conservative treatment (CKD) and 10 peritoneal dialysis (PD) patients.


Surprisingly, anthropometric characteristics and body composition were similar among the three groups. However, despite a low aFFM, muscle strength was higher in stable RTX recipients > 5 years after transplantation than in dialyzed patients. Instead, CKD (wait-listed for RTX) had similar muscle strength to RTX patients. Waist circumference in RTX recipients showed a redistribution of body fat with increased central adipose tissue allocation compared to PD. At linear regression analysis, age, weight, height, aFFM, hemoglobin and transplant age were independent predictors of handgrip strength, explaining about 37% of the variance. Age and transplant age accounted for 18 and 12% of variance, respectively.


Our study demonstrates, for the first time, that clinically stable RTX recipients have greater muscle strength than dialyzed patients and suggests that the handgrip test could be an effective and easy-to-perform tool to assess changes in physical performance in this large patient population.


Renal transplantation Physical performance Body composition Chronic kidney disease Handgrip strength 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

All procedures were in accordance with the ethical standards of the institutional and 1964 Helsinki declaration.


  1. 1.
    Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, Hobbs FD (2016) Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS ONE 11(7):e0158765CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, Matsushita K, Wen CP (2013) Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 27(9889):339–352CrossRefGoogle Scholar
  3. 3.
    Moreau K, Desseix A, Germain C, Barthe N, Bachelet T, Morel D, Merville P, Couzi L, Thiebaut R, Chauveau P (2014) Body composition in 98 patients awaiting kidney transplantation. Nutrition 30(2):186–191CrossRefPubMedGoogle Scholar
  4. 4.
    Foley RN, Wang C, Ishani A, Collins AJ, Murray AM (2007) Kidney function and sarcopenia in the United States general population: NHANES III. Am J Nephrol 27(1):279–286CrossRefPubMedGoogle Scholar
  5. 5.
    Ikizler TA, Himmelfarb J (2006) Muscle wasting in kidney disease: let’s get physical. J Am Soc Nephrol 17(8):2097–2098CrossRefPubMedGoogle Scholar
  6. 6.
    Isoyama N, Qureshi AR, Avesani CM, Lindholm B, Bàràny P, Heimbürger O, Cederholm T, Stenvinkel P, Carrero JJ (2014) Comparative associations of muscle mass and muscle strength with mortality in dialysis patients. Clin J Am Soc Nephrol 9(10):1720–1728CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Roshanravan B, Robinson-Cohen C, Patel KV, Ayers E, Littman AJ, de Boer IH et al (2013) Association between physical performance and all-cause mortality in CKD. J Am Soc Nephrol 24:822–830CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Slee AD (2012) Exploring metabolic disfunction in chronic kidney disease. Nutr Metab 9:36CrossRefGoogle Scholar
  9. 9.
    Siew ED, Ikizler TA (2010) Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease. Semin Dial 23(4):378–382CrossRefPubMedGoogle Scholar
  10. 10.
    Gupta J, Mitra N, Kanetsky PA, Devaney J, Wing MR, Reilly M, Shah VO, Balakrishnan VS, Guzman NJ, Girndt M, Periera BG, Feldman HI, Kusek JW, Joffe MM, Raj DS (2012) Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol 7:1938–1946CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Stenvinkel P, Heimburger O, Paultre F, Diczfalusy U, Wang T, Berglund L, Jogestrand T (1999) Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int 55:1899–1911CrossRefPubMedGoogle Scholar
  12. 12.
    Dounousi E, Papavasiliou E, Makedou A, Ioannou K, Katopodis KP, Tselepis A, Siamopoulos KC, Tsakiris D (2006) Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kidney Dis 48(5):752–760CrossRefPubMedGoogle Scholar
  13. 13.
    Perri A, Vizza D, Lupinacci S, Toteda G, De Amicis F, Leone F, Gigliotti P, Lofaro D, La Russa A, Bonofiglio R (2016) Adiponectin secreted by tubular renal cells during LPS exposure worsens the cellular inflammatory damage. J Nephrol 29(2):185–194CrossRefPubMedGoogle Scholar
  14. 14.
    Sabatino A, Regolisti G, Gandolfini I, Delsante M, Fani F, Gregorini MC, Fiaccadori E (2017) Diet and enteral nutrition in patients with chronic kidney disease not on dialysis: a review focusing on fat, fiber and protein intake. J Nephrol 30(6):743–754CrossRefPubMedGoogle Scholar
  15. 15.
    Bellizzi V, Bianchi S, Bolasco P, Brunori G, Cupisti A, Gambaro G, Gesualdo L, Polito P, Santoro D, Santoro A (2016) A Delphi consensus panel on nutritional therapy in chronic kidney disease. J Nephrol 29(5):593–602CrossRefPubMedGoogle Scholar
  16. 16.
    Libetta C, Sepe V, Esposito P, Galli F, Dal Canton A (2011) Oxidative stress and inflammation: implications in uremia and hemodialysis. Clin Biochem 44:1189–1198CrossRefPubMedGoogle Scholar
  17. 17.
    Frank RD, Weber J, Dresbach H, Thelen H, Weiss C, Floege J (2001) Role of contact system activation in hemodialyzer-induced thrombogenicity. Kidney Int 60(5):1972–1981CrossRefPubMedGoogle Scholar
  18. 18.
    Horl WH (2002) Hemodialysis membranes: interleukins, biocompatibility, and middle molecules. J Am Soc Nephrol 13(Suppl 1):S62–S71PubMedGoogle Scholar
  19. 19.
    Spittle MA, Hoenich NA, Handelman GJ, Adhikarla R, Homel P, Levin NW (2001) Oxidative stress and inflammation in hemodialysis patients. Am J Kidney Dis 38(6):1408–1413CrossRefPubMedGoogle Scholar
  20. 20.
    Galli F, Varga Z, Balla J, Ferraro B, Canestrari F, Floridi A, Kakuk G, Buoncristiani U (2001) Vitamin E, lipid profile, and peroxidation in hemodialysis patients. Kidney Int Suppl 78:S148–S154CrossRefPubMedGoogle Scholar
  21. 21.
    Chen MF, Chang CL, Liou SY (1998) Increase in resting levels of superoxide anion in the whole blood of uremic patients on chronic hemodialysis. Blood Purif 16(5):290–300CrossRefPubMedGoogle Scholar
  22. 22.
    Wolfe RA, Ashby VB, Milford EL, Ojo A, Ettenger RE, Agodoa LY, Held PJ, Port FK (1999) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 341(23):1725–1730CrossRefPubMedGoogle Scholar
  23. 23.
    Purnell TS, Auguste P, Crews DC, Lamprea-Montealegre J, Olufade T, Greer R, Ephraim P, Sheu J, Kostecki D, Powe NR, Rabb H, Jaar B, Boulware LE (2013) Comparison of life participation activities among adults treated by hemodialysis, peritoneal dialysis, and kidney transplantation: a systematic review. Am J Kidney Dis 62(5):953–973CrossRefPubMedGoogle Scholar
  24. 24.
    Hartmann EL, Kitzman D, Rocco M, Leng X, Klepin H, Gordon M, Rejeski J, Berry M, Kritchevsky S (2009) Physical function in older candidates for renal transplantation: an impaired population. Clin J Am Soc Nephrol 4(3):588–594CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    El Haggan W, Hurault de Ligny B, Partiu A, Sabatier JP, Lobbedez T, Levaltier B, Ryckelynck JP (2006) The evolution of weight and body composition in renal transplant recipients: two-year longitudinal study. Transplant Proc 38(10):3517–3519CrossRefPubMedGoogle Scholar
  26. 26.
    National cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106:3143CrossRefGoogle Scholar
  27. 27.
    Rossi AP, Harris TB, Fantin F, Armellini F, Zamboni M (2014) The multidomain mobility lab in older persons: from bench to bedside. The assessment of body composition in older persons at risk of mobility limitations. Curr Pharm Des 20(19):3245–3255CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pöge U, Gerhardt T, Palmedo H, Klehr HU, Sauerbruch T, Woitas RP (2005) MDRD equations for estimation of GFR in renal transplant recipients. Am J Transplant 5(6):1306–1311CrossRefPubMedGoogle Scholar
  29. 29.
    Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49(2):M85-94CrossRefPubMedGoogle Scholar
  30. 30.
    Habedank D, Kung T, Karhausen T, von Haehling S, Doehner W, Schefold JC, Hasper D, Reinke S, Anker SD, Reinke P (2009) Exercise capacity and body composition in living-donor renal transplant recipients over time. Nephrol Dial Transplant 24(12):3854–3860CrossRefPubMedGoogle Scholar
  31. 31.
    Leong DP, Teo KK, Rangarajan S, Kutty VR, Lanas F, Hui C, Quanyong X, Zhenzhen Q, Jinhua T, Noorhassim I, AlHabib KF, Moss SJ, Rosengren A, Akalin AA, Rahman O, Chifamba J, Orlandini A, Kumar R, Yeates K, Gupta R, Yusufali A, Dans A, Avezum Á, Lopez-Jaramillo P, Poirier P, Heidari H, Zatonska K, Iqbal R, Khatib R, Yusuf S (2016) Reference ranges of handgrip strength from 125,462 healthy adults in 21 countries: a prospective urban rural epidemiologic (PURE) study. J Cachexia Sarcopenia Muscle 7(5):535–546CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Harada H, Nakamura M, Hotta K, Iwami D, Seki T, Togashi M, Hirano T, Miyazaki C (2012) Percentages of water, muscle, and bone decrease and lipid increases in early period after successful kidney transplantation: a body composition analysis. Transplant Proc 44(3):672–675CrossRefPubMedGoogle Scholar
  33. 33.
    Esposito P, Furini F, Rampino T, Gregorini M, Petrucci L, Klersy C, Dal Canton A, Dalla Toffola E (2017) Assessment of physical performance and quality of life in kidney-transplanted patients: a cross-sectional study. Clin Kidney J 10(1):124–130PubMedGoogle Scholar
  34. 34.
    Wang AY-M, Sea MM-M, Ho ZS-Y, Lui S-F, Li PK-T, Woo J (2005) Evaluation of handgrip strength as a nutritional marker and prognostic indicator in peritoneal dialysis patients. Am J Clin nutr 81:79–86CrossRefPubMedGoogle Scholar
  35. 35.
    El Haggan W, Vendrely B, Chauveau P, Barthe N, Castaing F, Berger F, de Précigout V, Potaux L, Aparicio M (2002) Early evolution of nutritional status and body composition after kidney transplantation. Am J Kidney Dis 40(3):629–637CrossRefPubMedGoogle Scholar
  36. 36.
    Watt KD (2011) Metabolic syndrome: is immunosuppression to blame? Liver Transpl 17(Suppl 3):S38–S42CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Nephrology 2018

Authors and Affiliations

  • Andrea Petronio Rossi
    • 1
  • Gianluigi Zaza
    • 2
    • 4
    Email author
  • Marina Zanardo
    • 1
  • Francesco Pedelini
    • 1
  • Laura Dalla Verde
    • 1
  • Chiara Caletti
    • 2
  • Alessia D’Introno
    • 3
  • Antonio Lupo
    • 2
  • Mauro Zamboni
    • 1
  1. 1.Division of Geriatrics, Department of MedicineUniversity of VeronaVeronaItaly
  2. 2.Renal Unit, Department of MedicineUniversity of VeronaVeronaItaly
  3. 3.Division of Geriatrics, Department of MedicineUniversity of BariBariItaly
  4. 4.Renal Unit, Department of MedicineUniversity of VeronaVeronaItaly

Personalised recommendations