Advertisement

Natural history and risk factors for diabetic kidney disease in patients with T2D: lessons from the AMD-annals

  • Francesca Viazzi
  • Giuseppina Tiziana Russo
  • Antonio Ceriello
  • Paola Fioretto
  • Carlo Giorda
  • Salvatore De Cosmo
  • Roberto PontremoliEmail author
Review
  • 71 Downloads

Abstract

The Associazione Medici Diabetologi (AMD) annals initiative is an ongoing observational survey promoted by AMD. It is based on a public network of about 700 Italian diabetes clinics, run by specialists who provide diagnostic confirmation and prevention and treatment of diabetes and its complications. Over the last few years, analysis of the AMD annals dataset has contributed several important insights on the clinical features of type-2 diabetes kidney disease and their prognostic and therapeutic implications. First, non-albuminuric renal impairment is the predominant clinical phenotype. Even though associated to a lower risk of progression compared to overt albuminuria, it contributes significantly to the burden of end-stage renal disease morbidity. Second, optimal blood pressure control provides significant but incomplete renal protection. It reduces albuminuria but there may be a J curve phenomenon with eGFR at very low blood pressure values. Third, hyperuricemia and diabetic hyperlipidemia, namely elevated triglycerides and low HDL cholesterol, are strong independent predictors of chronic kidney disease (CKD) onset in diabetes, although the pathogenetic mechanisms underlying these associations remain uncertain. Fourth, the long-term intra-individual variability in HbA1c, lipid parameters, uric acid and blood pressure plays a greater role in the appearance and progression of CKD than the absolute value of each single variable. These data help clarify the natural history of CKD in patients with type 2 diabetes and provide important clues for designing future interventional studies.

Keywords

T2 diabetes Glomerular filtration rate Albuminuria Chronic kidney disease Hypertension 

Notes

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest regarding the material discussed in the manuscript.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    Thomas MC, Macisaac RJ, Jerums G, Weekes A, Moran J, Shaw JE, Atkins RC (2009) Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (national evaluation of the frequency of renal impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care 32:1497e502Google Scholar
  2. 2.
    Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M, Patel A, Cass A, Neal B, Poulter N, Mogensen CE, Cooper M, Marre M, Williams B, Hamet P, Mancia G, Woodward M, Macmahon S, Chalmers J, ADVANCE Collaborative Group (2009) Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol 20:1813e21CrossRefGoogle Scholar
  3. 3.
    Drury PL, Ting R, Zannino D, Ehnholm C, Flack J, Whiting M, Fassett R, Ansquer JC, Dixon P, Davis TM, Pardy C, Colman P, Keech A (2011) Estimated glomerular filtration rate and albuminuria are independent predictors of cardiovascular events and death in type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia 54:32e43CrossRefGoogle Scholar
  4. 4.
    Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR, UKPDS Group (2003) Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63:225e32CrossRefGoogle Scholar
  5. 5.
    Packham DK, Alves TP, Dwyer JP, Atkins R, de Zeeuw D, Cooper M, Shahinfar S, Lewis JB, Lambers Heerspink HJ (2011) Relative incidence of ESRD versus cardiovascular mortality in proteinuric type 2 diabetes and nephropathy: results from the DIAMETRIC (diabetes mellitus treatment for renal insufficiency consortium) database. Am J Kidney Dis 59:75e83Google Scholar
  6. 6.
    Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, Jafar T, Jassal SK, Landman GW, Muntner P, Roderick P, Sairenchi T, Schöttker B, Shankar A, Shlipak M, Tonelli M, Townend J, van Zuilen A, Yamagishi K, Yamashita K, Gansevoort R, Sarnak M, Warnock DG, Woodward M, Ärnlöv J, CKD Prognosis Consortium (2015) Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol 3:514–525.  https://doi.org/10.1016/S2213-8587(15)00040-6 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    De Cosmo S, Rossi MC, Pellegrini F, Lucisano G, Bacci S, Gentile S, Ceriello A, Russo G, Nicolucci A, Giorda C, Viazzi F, Pontremoli R, AMD-Annals Study Group (2014) Kidney dysfunction and related cardiovascular risk factors among patients with type 2 diabetes. Nephrol Dial Transplant 29:657–662CrossRefPubMedGoogle Scholar
  8. 8.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    De Cosmo S, Viazzi F, Pacilli A, Giorda C, Ceriello A, Gentile S, Russo G, Rossi MC, Nicolucci A, Guida P, Di Bartolo P, Pontremoli R, AMD-Annals Study Group (2015) Achievement of therapeutic targets in patients with diabetes and chronic kidney disease: insights from the Associazione Medici Diabetologi Annals initiative. Nephrol Dial Transplant 30:1526–1533.  https://doi.org/10.1093/ndt/gfv101 CrossRefPubMedGoogle Scholar
  10. 10.
    Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, Trevisan R, Vedovato M, Gruden G, Cavalot F, Cignarelli M, Laviola L, Morano S, Nicolucci A, Pugliese G, Renal Insufficiency and Cardiovascular Events (RIACE) Study Group (2011) Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens 29:1802–1809CrossRefPubMedGoogle Scholar
  11. 11.
    Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, UKPDS Study Group (2006) Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 55:1832–1839CrossRefPubMedGoogle Scholar
  12. 12.
    Viazzi F, Piscitelli P, Giorda C, Ceriello A, Genovese S, Russo GT, Fioretto P, Guida P, De Cosmo S, Pontremoli R, AMD-Annals Study Group (2017) Association of kidney disease measures with risk of renal function worsening in patients with hypertension and type 2 diabetes. J Diabetes Complicat 31:419–426.  https://doi.org/10.1016/j.jdiacomp.2016.10.030 CrossRefPubMedGoogle Scholar
  13. 13.
    De Cosmo S, Viazzi F, Piscitelli P, Giorda C, Ceriello A, Genovese S, Russo G, Guida P, Fioretto P, Pontremoli R, AMD-Annals Study Group (2016) Blood pressure status and the incidence of diabetic kidney disease in patients with hypertension and type 2 diabetes. J Hypertens 34:2090–2098.  https://doi.org/10.1097/HJH.0000000000001045 CrossRefPubMedGoogle Scholar
  14. 14.
    Viazzi F, Ceriello A, Fioretto P, Giorda C, Guida P, Russo G, Greco E, De Cosmo S, Pontremoli R, AMD-Annals Study Group (2018) Changes in albuminuria and renal outcome in patients with type 2 diabetes and hypertension: a real-life observational study. J Hypertens 36:1719–1728.  https://doi.org/10.1097/HJH.0000000000001749 CrossRefPubMedGoogle Scholar
  15. 15.
    Viazzi F, Piscitelli P, Ceriello A, Fioretto P, Giorda C, Guida P, Russo G, De Cosmo S, Pontremoli R, AMD-Annals Study Group (2017) Resistant hypertension, time-updated blood pressure values and renal outcome in type 2 diabetes mellitus. J Am Heart Assoc 6(9):e006745.  https://doi.org/10.1161/JAHA.117.006745 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Viazzi F, Greco E, Ceriello A, Fioretto P, Giorda C, Guida P, Russo G, De Cosmo S, Pontremoli R, AMD-Annals Study Group (2018) Apparent treatment resistant hypertension, blood pressure control and the progression of chronic kidney disease in patients with type 2 diabetes. Kidney Blood Press Res 43:422–438.  https://doi.org/10.1159/000488255 CrossRefPubMedGoogle Scholar
  17. 17.
    De Cosmo S, Viazzi F, Pacilli A, Giorda C, Ceriello A, Gentile S, Russo G, Rossi MC, Nicolucci A, Guida P, Feig D, Johnson RJ, Pontremoli R, AMD-Annals Study Group (2015) Serum uric acid and risk of CKD in type 2 diabetes. Clin J Am Soc Nephrol 10:1921–1929.  https://doi.org/10.2215/CJN.03140315 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Viazzi F, Piscitelli P, Giorda C, Ceriello A, Genovese S, Russo G, Guida P, Fioretto P, De Cosmo S, Pontremoli R, AMD-Annals Study Group (2017) Metabolic syndrome, serum uric acid and renal risk in patients with T2D. PLoS One 12:e0176058.  https://doi.org/10.1371/journal.pone.0176058. eCollection 2017CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Maahs DM, Caramori L, Cherney DZ, Galecki AT, Gao C, Jalal D, Perkins BA, Pop-Busui R, Rossing P, Mauer M, Doria A, PERL Consortium (2013) Uric acid lowering to prevent kidney function loss in diabetes: the preventing early renal function loss (PERL) allopurinol study. Curr Diabetes Rep 13:550–559CrossRefGoogle Scholar
  20. 20.
    Vaziri ND (2010) Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. J Ren Nutr 20:S35–S43CrossRefPubMedGoogle Scholar
  21. 21.
    Russo GT, Baggio G, Rossi MC, Kautzky-Willer A (2015) Type 2 diabetes and cardiovascular risk in women. Int J Endocrinol 2015:832484.  https://doi.org/10.1155/2015/832484 PubMedPubMedCentralGoogle Scholar
  22. 22.
    Russo GT, Horvath KV, Di Benedetto A, Giandalia A, Cucinotta D, Asztalos B (2010) Influence of menopause and cholesteryl ester transfer protein (CETP) TaqIB polymorphism on lipid profile and HDL subpopulations distribution in women with and without type 2 diabetes. Atherosclerosis 210:294–301CrossRefPubMedGoogle Scholar
  23. 23.
    Russo GT, Meigs JB, Cupples LA, Demissie S, Otvos JD, Wilson PW, Lahoz C, Cucinotta D, Couture P, Mallory T, Schaefer EJ, Ordovas JM (2001) Association of the Sst-I polymorphism at the APOC3 gene locus with variations in lipid levels, lipoprotein subclass profiles and coronary heart disease risk: the Framingham offspring study. Atherosclerosis 158:173–1781CrossRefPubMedGoogle Scholar
  24. 24.
    Russo GT, Giandalia A, Romeo EL, Muscianisi M, Ruffo MC, Alibrandi A, Bitto A, Forte F, Grillone A, Asztalos B, Cucinotta D (2017) HDL subclasses and the common CETP TaqIB variant predict the incidence of microangiopatic complications in type 2 diabetic women: a 9 years follow-up study. Diabetes Res Clin Pract 132:108–117CrossRefPubMedGoogle Scholar
  25. 25.
    Morton J, Zoungas S, Li Q, Patel AA, Chalmers J, Woodward M, Celermajer DS, Beulens JW, Stolk RP, Glasziou P, Ng MK, ADVANCE Collaborative Group (2012) Low HDL cholesterol and the risk of diabetic nephropathy and retinopathy: results of the ADVANCE study. Diabetes Care 35:2201–2206.  https://doi.org/10.2337/dc12-0306 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zoppini G, Negri C, Stoico V, Casati S, Pichiri I, Bonora E (2012) Triglyceride-high-density lipoprotein cholesterol is associated with microvascular complications in type 2 diabetes mellitus. Metabolism 61:22–29CrossRefPubMedGoogle Scholar
  27. 27.
    Penno G, Solini A, Zoppini G, Fondelli C, Trevisan R, Vedovato M, Gruden G, Lamacchia O, Pontiroli AE, Arosio M, Orsi E, Pugliese G, Renal Insufficiency And Cardiovascular Events (RIACE) Study Group (2015) Hypertriglyceridemia is independently associated with renal, but not retinal complications in subjects with type 2 diabetes: a cross-sectional analysis of the Renal Insufficiency and Cardiovascular Events (RIACE) Italian Multicenter Study. PLoS One 10:e0125512.  https://doi.org/10.1371/journal.pone.0125512 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Russo GT, De Cosmo S, Viazzi F, Pacilli A, Ceriello A, Genovese S, Guida P, Giorda C, Cucinotta D, Pontremoli R, Fioretto P, AMD-Annals Study Group (2016) Plasma triglycerides and HDL-C levels predict the development of diabetic kidney disease in subjects with type 2 diabetes: the AMD annals initiative. Diabetes Care 39:2278–2287CrossRefPubMedGoogle Scholar
  29. 29.
    Hanai K, Babazono T, Yoshida N, Nyumura I, Toya K, Hayashi T, Bouchi R, Tanaka N, Ishii A, Iwamoto Y (2012) Gender differences in the association between HDL cholesterol and the progression of diabetic kidney disease in type 2 diabetic patients. Nephrol Dial Transplant 27:1070–1075CrossRefPubMedGoogle Scholar
  30. 30.
    Lin J, Hu FB, Mantzoros C, Curhan GC (2010) Lipid and inflammatory biomarkers and kidney function decline in type 2 diabetes. Diabetologia 53:263–267CrossRefPubMedGoogle Scholar
  31. 31.
    Wong TY, Klein R, Islam FM, Cotch MF, Folsom A, Klein BE, Sharret AR, Shea S (2006) Diabetic retinopathy in a multi-ethnic cohort in the United States. Am J Ophtalmol 141:446–455CrossRefGoogle Scholar
  32. 32.
    Riso A, Mercuri F, Quagliaro L, Damante G, Ceriello A (2001) Intermittant high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab 281:E924–E930CrossRefGoogle Scholar
  33. 33.
    Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 52:2795–2804CrossRefPubMedGoogle Scholar
  34. 34.
    Hirsch IB (2015) Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care 38:1610–1614.  https://doi.org/10.2337/dc14-2898 CrossRefPubMedGoogle Scholar
  35. 35.
    Gorst C, Kwok CS, Aslam S, Buchan I, Kontopantelis E, Myint PK, Heatlie G, Loke Y, Rutter MK, Mamas MA (2015) Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care 38:2354–2369CrossRefPubMedGoogle Scholar
  36. 36.
    Hirakawa Y, Arima H, Zoungas S, Ninomiya T, Cooper M, Hamet P, Mancia G, Poulter N, Harrap S, Woodward M, Chalmers J (2014) Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: the ADVANCE trial. Diabetes Care 37:2359–2365CrossRefPubMedGoogle Scholar
  37. 37.
    Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, Morano S, Cavalot F, Lamacchia O, Laviola L, Nicolucci A, Pugliese G, Renal Insufficiency And Cardiovascular Events Study Group (2013) HbA1c variability as an independent correlate of nephropathy, but not retinopathy, in patients with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care 36:2301–2310CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chang YH, Chang DM, Lin KC, Hsieh CH, Lee YJ (2013) High-density lipoprotein cholesterol and the risk of nephropathy in type 2 diabetic patients. Nutr Metab Cardiovasc Dis 23:751–757CrossRefPubMedGoogle Scholar
  39. 39.
    Rothwell PM (2010) Limitations of the usual blood-pressure hypothesis and importance of variability, instability, and episodic hypertension. Lancet 375:938–948CrossRefPubMedGoogle Scholar
  40. 40.
    Ceriello A, De Cosmo S, Rossi MC, Lucisano G, Genovese S, Pontremoli R, Fioretto P, Giorda C, Pacilli A, Viazzi F, Russo G, Nicolucci A, AMD-Annals Study Group (2017) Variability in HbA1c, blood pressure, lipid parameters and serum uric acid, and risk of development of chronic kidney disease in type 2 diabetes. Diabetes Obes Metab 19:1570–1578CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Nephrology 2018

Authors and Affiliations

  1. 1.Università degli Studi and IRCCS Policlinico San Martino-ISTGenoaItaly
  2. 2.Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
  3. 3.Institut d’Investigacions Biomèdiques August Pii Sunyer (IDIBAPS) and Centro de Investigación Biomédicaen Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)BarcelonaSpain
  4. 4.U.O. Diabetologia e Malattie Metaboliche, Multimedica IRCCSMilanItaly
  5. 5.Department of MedicineUniversity of PaduaPaduaItaly
  6. 6.Diabetes and Metabolism Unit ASL Turin 5ChieriItaly
  7. 7.Department of Medical SciencesScientific Institute “Casa Sollievo della Sofferenza”San Giovanni Rotondo (FG)Italy

Personalised recommendations