Higher prevalence of unrecognized kidney disease at high altitude

  • Abdias Hurtado-Arestegui
  • Raul Plata-Cornejo
  • Arturo Cornejo
  • Guiliana Mas
  • Luz Carbajal
  • Shailendra Sharma
  • Erik R. Swenson
  • Richard J. Johnson
  • Jackelina Pando
Original Article
  • 32 Downloads

Abstract

Background

High altitude renal syndrome has been described in populations with excessive erythrocytosis. We evaluated whether high altitude (HA) dwellers might be at increased risk for kidney disease.

Methods

We performed a cross-sectional study to investigate differences in prevalence of kidney function and metabolic syndrome in healthy subjects living at HA vs. sea level (SL) without any known history of hypertension, diabetes or chronic kidney disease.

Results

We examined 293 subjects, aged 40 to 60 years: 125 SL (154 m) and 168 HA (3640 m) dwellers. HA dwellers had higher serum creatinine, lower estimated glomerular function rate (eGFR) (69.5 ± 15.2 vs. 102.1 ± 17.8 ml/min/1.73 m2, p < 0.0001), more proteinuria and higher hemoglobin concentrations compared to SL subjects. HA subjects had a lower prevalence of metabolic syndrome. Hemoglobin concentrations correlated inversely with eGFR in female (p = 0.001) and male (p = 0.03) HA dwellers. Using logistic regression analysis to compare subjects with eGFR < 90 vs. > 90 ml/min/1.73 m2, a lower eGFR was associated with female gender (odds ratio adjusted: 5.65 [95% confidence interval: 2.43–13.13]; p = 0.001), high altitude (14.78 [6.46–33.79]; p = 0.001), hemoglobin (1.68 [1.16–2.43]; p = 0.001) and uric acid (1.93 [1.36–2.72]; p = 0.001).

Conclusions

Dwellers at high altitude who are considered healthy have worse kidney function, a higher prevalence of proteinuria and a lower prevalence of metabolic syndrome compared to people living at SL.

Keywords

Cardiovascular risk High altitude Kidney function Proteinuria 

References

  1. 1.
    Hurtado A, Escudero E, Pando J, Sharma S, Johnson RJ (2012) Cardiovascular and renal effects of chronic exposure to high altitude. Nephrol Dial Transpl 27(Suppl 4):iv11–16CrossRefGoogle Scholar
  2. 2.
    Luks AM, Johnson RJ, Swenson ER (2008) Chronic kidney disease at high altitude. J Am Soc Nephrol JASN 19(12):2262–2271CrossRefPubMedGoogle Scholar
  3. 3.
    Jefferson JA, Escudero E, Hurtado M-E, Kelly JP, Swenson ER, Wener MH et al (2002) Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia. Am J Kidney Dis 39(6):1135–1142CrossRefPubMedGoogle Scholar
  4. 4.
    Arestegui AH, Fuquay R, Sirota J, Swenson ER, Schoene RB, Jefferson JA et al (2011) High altitude renal syndrome (HARS). J Am Soc Nephrol 22(11):1963–1968CrossRefPubMedGoogle Scholar
  5. 5.
    León-Velarde F, Maggiorini M, Reeves JT, Aldashev A, Asmus I, Bernardi L et al (2005) Consensus statement on chronic and subacute high altitude diseases. High Alt Med Biol 6(2):147–157CrossRefPubMedGoogle Scholar
  6. 6.
    Lozano R, Monge C (1965) Renal function in high-altitude natives and in natives with chronic mountain sickness. J Appl Physiol 20(5):1026–1027PubMedGoogle Scholar
  7. 7.
    Kang D-H, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M et al (2002) A role for uric acid in the progression of renal disease. J Am Soc Nephrol 13(12):2888–2897CrossRefPubMedGoogle Scholar
  8. 8.
    Ryu E-S, Kim MJ, Shin H-S, Jang Y-H, Choi HS, Jo I et al (2013) Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol Renal Physiol 304(5):F471-480CrossRefGoogle Scholar
  9. 9.
    International Society of Nephrology. Program for detection and management of chronic kidney disease, hypertension, diabetes, and cardiovascular disease in developing countries (KHDC). [Internet]. http://www.isn-online.org/isn/education/guidelines/isn/full/ed_051027_1.html. Accessed 10 Oct 2012
  10. 10.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL et al (2003) The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289(19):2560–2572CrossRefPubMedGoogle Scholar
  11. 11.
    National Kidney Foundation (2002 ) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266Google Scholar
  12. 12.
    Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute. American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645CrossRefPubMedGoogle Scholar
  13. 13.
    Payne R (2010) Risk calculator graphs based on Joint British Societies risk prediction charts [Internet]. http://cvrisk.mvm.ed.ac.uk/calculator/calc.asp. Accessed 6 Nov 2014
  14. 14.
    Hallan SI, Coresh J, Astor BC, Asberg A, Powe NR, Romundstad S et al (2006) International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol 17(8):2275–2284CrossRefPubMedGoogle Scholar
  15. 15.
    Chen W, Liu Q, Wang H, Chen W, Johnson RJ, Dong X et al (2011) Prevalence and risk factors of chronic kidney disease: a population study in the Tibetan population. Nephrol Dial Transpl 26(5):1592–1599CrossRefGoogle Scholar
  16. 16.
    Beall CM (2006) Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Comp Biol 46(1):18–24CrossRefPubMedGoogle Scholar
  17. 17.
    Swenson ER (2014) The kidneys and fluid balance. In: Swenson ER, Bartsch P (eds) High altitude: human adaptation to hypoxia. Springer, New York, pp 217–236CrossRefGoogle Scholar
  18. 18.
    Brenner BM (1983) Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int 23(4):647–655CrossRefPubMedGoogle Scholar
  19. 19.
    Shoji K, Tanaka T, Nangaku M (2014) Role of hypoxia in progressive chronic kidney disease and implications for therapy. Curr Opin Nephrol Hypertens 23(2):161–168CrossRefPubMedGoogle Scholar
  20. 20.
    Evans RG, O’Connor PM (2013) Initiation and progression of chronic kidney disease: can we definitively test the chronic hypoxia hypothesis? Hypertension 62(5):827–828CrossRefPubMedGoogle Scholar
  21. 21.
    Ames BN, Cathcart R, Schwiers E et al (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 78:6858–6862CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Johnson RJ, Nakagawa T, Jalal D, Sánchez-Lozada LG, Kang D-H, Ritz E (2013) Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transpl 28(9):2221–2228CrossRefGoogle Scholar
  23. 23.
    Castillo O, Woolcott OO, Gonzales E, Tello V, Tello L, Villarreal C et al (2007) Residents at high altitude show a lower glucose profile than sea-level residents throughout 12-hour blood continuous monitoring. High Alt Med Biol 8(4):307–311CrossRefPubMedGoogle Scholar
  24. 24.
    Santos JL, Pérez-Bravo F, Carrasco E, Calvillán M, Albala C (2001) Low prevalence of type 2 diabetes despite a high average body mass index in the Aymara natives from Chile. Nutrition 17(4):305–309CrossRefPubMedGoogle Scholar
  25. 25.
    Domínguez Coello S, Cabrera De León A, Bosa Ojeda F, Pérez Méndez LI, Díaz González L, Aguirre-Jaime AJ (2000) High density lipoprotein cholesterol increases with living altitude. Int J Epidemiol 29(1):65–70CrossRefPubMedGoogle Scholar
  26. 26.
    Baracco R, Mohanna S, Seclén S (2007) A comparison of the prevalence of metabolic syndrome and its components in high and low altitude populations in peru. Metab Syndr Relat Disord 5(1):55–62CrossRefPubMedGoogle Scholar
  27. 27.
    Miele CH, Schwartz AR, Gilman RH, Pham L, Wise RA, Davila-Roman VG et al (2016) Increased cardiometabolic risk and worsening hypoxemia at high altitude. High Alt Med Biol 17(2):93–100CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Benziger CP, Bernabé-Ortiz A, Gilman RH, Checkley W, Smeeth L, Málaga G et al (2015) Metabolic abnormalities are common among south american hispanics subjects with normal weight or excess body weight: the CRONICAS cohort study. PloS One 10(11):e0138968CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    D’Agostino RB, Grundy S, Sullivan LM, Wilson P, CHD Risk Prediction Group (2001) Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA 286(2):180–187CrossRefPubMedGoogle Scholar
  30. 30.
    Sherpa LY, Deji, Stigum H, Chongsuvivatwong V, Luobu O, Thelle DS et al (2011) Lipid profile and its association with risk factors for coronary heart disease in the highlanders of Lhasa, Tibet. High Alt Med Biol 12(1):57–63CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Nephrology 2017

Authors and Affiliations

  • Abdias Hurtado-Arestegui
    • 1
    • 2
  • Raul Plata-Cornejo
    • 3
  • Arturo Cornejo
    • 3
  • Guiliana Mas
    • 2
  • Luz Carbajal
    • 2
  • Shailendra Sharma
    • 4
  • Erik R. Swenson
    • 5
  • Richard J. Johnson
    • 6
  • Jackelina Pando
    • 7
  1. 1.Division of NephrologyHospital Arzobispo LoayzaLimaPeru
  2. 2.Cayetano Heredia UniversityLimaPeru
  3. 3.Instituto de NefrologíaLa PazBolivia
  4. 4.Division of Renal Disease and HypertensionThe George Washington UniversityWashingtonUSA
  5. 5.Division of Pulmonary, Critical Care and Sleep Medicine, Medical Service, VA Puget Sound Health Care SystemUniversity of WashingtonSeattleUSA
  6. 6.Division of Renal Diseases and HypertensionUniversity of ColoradoDenverUSA
  7. 7.Department of Paediatrics and Child HealthUniversity College CorkCorkIreland

Personalised recommendations