Journal of Nephrology

, Volume 29, Issue 5, pp 617–626 | Cite as

The role of bone biopsy for the diagnosis of renal osteodystrophy: a short overview and future perspectives

  • Catarina Carvalho
  • Catarina Moniz Alves
  • João Miguel Frazão


Chronic kidney disease (CKD) patients present specific bone and mineral metabolism disturbances, which account for important morbidity and mortality. The term renal osteodystrophy, classically used for the nomination of CKD-associated bone disorder, has been limited to the histologic description of bone lesions, requiring the use of bone biopsy. Biochemical markers and imaging tools do not adequately predict the complex bone changes that are observed in renal osteodystrophy. Parathyroid hormone, which is a universally used biomarker of bone turnover in clinical practice, lacks specificity and sensitivity. Therefore, tetracycline double-labelled transiliac bone biopsy, with bone histology and histomorphometric evaluation, remains the best clinical tool to discriminate bone turnover and to evaluate the other dimensions of renal osteodystrophy. This review will focus on the value of classic bone histomorphometric analysis of trabecular bone in CKD patients and unfold new perspectives of this diagnostic tool, including cortical bone evaluation and bone tissue immunohistochemistry.


Bone biopsy Chronic kidney disease-related mineral and bone disease (CKD-MBD) Renal osteodystrophy Cortical bone Immunohistochemistry 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

All procedures performed in the reported studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) (2009). Kidney international Supplement (113):S1-130. doi: 10.1038/ki.2009.188
  2. 2.
    Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol JASN 15(8):2208–2218. doi: 10.1097/01.asn.0000133041.27682.a2 CrossRefPubMedGoogle Scholar
  3. 3.
    Coen G, Manni M, Mantella D, Pierantozzi A, Balducci A, Condo S, DiGiulio S, Yancovic L, Lippi B, Manca S, Morosetti M, Pellegrino L, Simonetti G, Gallucci MT, Splendiani G (2007) Are PTH serum levels predictive of coronary calcifications in haemodialysis patients? Nephrol Dial Transpl Off Publ Euro Dial Transpl Assoc Euro Renal Assoc 22(11):3262–3267. doi: 10.1093/ndt/gfm370 Google Scholar
  4. 4.
    Mittalhenkle A, Gillen DL, Stehman-Breen CO (2004) Increased risk of mortality associated with hip fracture in the dialysis population. Am J Kidney Dis Off J Nat Kidney Found 44(4):672–679CrossRefGoogle Scholar
  5. 5.
    Kalantar-Zadeh K, Kuwae N, Regidor DL, Kovesdy CP, Kilpatrick RD, Shinaberger CS, McAllister CJ, Budoff MJ, Salusky IB, Kopple JD (2006) Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 70(4):771–780. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  6. 6.
    Ferreira A, Frazao JM, Monier-Faugere MC, Gil C, Galvao J, Oliveira C, Baldaia J, Rodrigues I, Santos C, Ribeiro S, Hoenger RM, Duggal A, Malluche HH (2008) Effects of sevelamer hydrochloride and calcium carbonate on renal osteodystrophy in hemodialysis patients. J Am Soc Nephrol JASN 19(2):405–412. doi: 10.1681/asn.2006101089 CrossRefPubMedGoogle Scholar
  7. 7.
    Malluche HH, Mawad HW, Monier-Faugere MC (2011) Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Mineral Res Off J Am Soc Bone Mineral Res 26(6):1368–1376. doi: 10.1002/jbmr.309 CrossRefGoogle Scholar
  8. 8.
    Babayev R, Nickolas TL (2014) Can one evaluate bone disease in chronic kidney disease without a biopsy? Curr Opin Nephrol Hypertens 23(4):431–437. doi: 10.1097/01.mnh.0000447014.36475.58 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lehmann G, Stein G, Huller M, Schemer R, Ramakrishnan K, Goodman WG (2005) Specific measurement of PTH (1-84) in various forms of renal osteodystrophy (ROD) as assessed by bone histomorphometry. Kidney Int 68(3):1206–1214. doi: 10.1111/j.1523-1755.2005.00513.x CrossRefPubMedGoogle Scholar
  10. 10.
    Torres A, Lorenzo V, Hernandez D, Rodriguez JC, Concepcion MT, Rodriguez AP, Hernandez A, de Bonis E, Darias E, Gonzalez-Posada JM et al (1995) Bone disease in predialysis, hemodialysis, and CAPD patients: evidence of a better bone response to PTH. Kidney Int 47(5):1434–1442CrossRefPubMedGoogle Scholar
  11. 11.
    Qi Q, Monier-Faugere MC, Geng Z, Malluche HH (1995) Predictive value of serum parathyroid hormone levels for bone turnover in patients on chronic maintenance dialysis. Am J Kidney Dis Off J Nat Kidney Found 26(4):622–631CrossRefGoogle Scholar
  12. 12.
    Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, D’Haese PC, Drueke TB, Du H, Manley T, Rojas E, Moe SM (2016) Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis. Am J Kidney Dis Off J Nat Kidney Found 67(4):559–566. doi: 10.1053/j.ajkd.2015.06.023 CrossRefGoogle Scholar
  13. 13.
    Bergman A, Qureshi AR, Haarhaus M, Lindholm B, Barany P, Heimburger O, Stenvinkel P, Anderstam B (2016) Total and bone-specific alkaline phosphatase are associated with bone mineral density over time in end-stage renal disease patients starting dialysis. J Nephrol. doi: 10.1007/s40620-016-0292-7 PubMedGoogle Scholar
  14. 14.
    Bucur RC, Panjwani DD, Turner L, Rader T, West SL, Jamal SA (2015) Low bone mineral density and fractures in stages 3-5 CKD: an updated systematic review and meta-analysis. Osteoporos Int J Establ Res Coop Euro Found Osteoporos Nat Osteoporos Found USA 26(2):449–458. doi: 10.1007/s00198-014-2813-3 CrossRefGoogle Scholar
  15. 15.
    West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, Fusaro M, Wald R, Weinstein J, Jamal SA (2015) Bone mineral density predicts fractures in chronic kidney disease. J Bone Mineral Res Off J Am Soc Bone Mineral Res 30(5):913–919. doi: 10.1002/jbmr.2406 CrossRefGoogle Scholar
  16. 16.
    Jamal SA, Gilbert J, Gordon C, Bauer DC (2006) Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Mineral Res Off J Am Soc Bone Mineral Res 21(4):543–548. doi: 10.1359/jbmr.060105 CrossRefGoogle Scholar
  17. 17.
    Hernandez JD, Wesseling K, Pereira R, Gales B, Harrison R, Salusky IB (2008) Technical approach to iliac crest biopsy. Clin J Am Soc Nephrol CJASN 3(Suppl 3):S164–S169. doi: 10.2215/cjn.00460107 CrossRefPubMedGoogle Scholar
  18. 18.
    Torres PU, Bover J, Mazzaferro S, de Vernejoul MC, Cohen-Solal M (2014) When, how, and why a bone biopsy should be performed in patients with chronic kidney disease. Semin Nephrol 34(6):612–625. doi: 10.1016/j.semnephrol.2014.09.004 CrossRefPubMedGoogle Scholar
  19. 19.
    Duncan H, Rao SD, Parfitt AM (1981) Complications of bone biopsy. In: Bone Histomorphometry: Third Internatonal Workshop, Sun Valley—May 28/June 2, 1980, edited by Jee WS, Parfitt AM, Paris, Societe Nouvelle de Publications Medicales et Dentaires,1981., pp483 –486Google Scholar
  20. 20.
    Al Badr W, Martin KJ (2009) Role of bone biopsy in renal osteodystrophy. Saudi J Kidney Dis Transpl Off Publ Saudi Center Organ Transpl Saudi Arabia 20(1):12–19Google Scholar
  21. 21.
    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Mineral Res Off J Am Soc Bone Mineral Res 28(1):2–17. doi: 10.1002/jbmr.1805 CrossRefGoogle Scholar
  22. 22.
    Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21(1):13–16CrossRefPubMedGoogle Scholar
  23. 23.
    Rauch F, Travers R, Glorieux FH (2007) Intracortical remodeling during human bone development—a histomorphometric study. Bone 40(2):274–280. doi: 10.1016/j.bone.2006.09.012 CrossRefPubMedGoogle Scholar
  24. 24.
    Bala Y, Zebaze R, Seeman E (2015) Role of cortical bone in bone fragility. Curr Opin Rheumatol 27(4):406–413. doi: 10.1097/bor.0000000000000183 CrossRefPubMedGoogle Scholar
  25. 25.
    Seeman E (2003) The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am 32(1):25–38CrossRefPubMedGoogle Scholar
  26. 26.
    Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14(4):681–691CrossRefPubMedGoogle Scholar
  27. 27.
    Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet (London, England) 375(9727):1729–1736. doi: 10.1016/s0140-6736(10)60320-0
  28. 28.
    Bjornerem A, Bui QM, Ghasem-Zadeh A, Hopper JL, Zebaze R, Seeman E (2013) Fracture risk and height: an association partly accounted for by cortical porosity of relatively thinner cortices. J Bone Mineral Res Off J Am Soc Bone Mineral Res 28(9):2017–2026. doi: 10.1002/jbmr.1934 CrossRefGoogle Scholar
  29. 29.
    Dooley AC, Weiss NS, Kestenbaum B (2008) Increased risk of hip fracture among men with CKD. Am J Kidney Dis Off J Nat Kidney Found 51(1):38–44. doi: 10.1053/j.ajkd.2007.08.019 CrossRefGoogle Scholar
  30. 30.
    Fried LF, Biggs ML, Shlipak MG, Seliger S, Kestenbaum B, Stehman-Breen C, Sarnak M, Siscovick D, Harris T, Cauley J, Newman AB, Robbins J (2007) Association of kidney function with incident hip fracture in older adults. J Am Soc Nephrol JASN 18(1):282–286. doi: 10.1681/asn.2006050546 CrossRefPubMedGoogle Scholar
  31. 31.
    Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman-Breen C (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58(1):396–399. doi: 10.1046/j.1523-1755.2000.00178.x CrossRefPubMedGoogle Scholar
  32. 32.
    Ball AM, Gillen DL, Sherrard D, Weiss NS, Emerson SS, Seliger SL, Kestenbaum BR, Stehman-Breen C (2002) Risk of hip fracture among dialysis and renal transplant recipients. JAMA 288(23):3014–3018CrossRefPubMedGoogle Scholar
  33. 33.
    Stein EM, Silva BC, Boutroy S, Zhou B, Wang J, Udesky J, Zhang C, McMahon DJ, Romano M, Dworakowski E, Costa AG, Cusano N, Irani D, Cremers S, Shane E, Guo XE, Bilezikian JP (2013) Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J Bone Mineral Res Off J Am Soc Bone Mineral Res 28(5):1029–1040. doi: 10.1002/jbmr.1841 CrossRefGoogle Scholar
  34. 34.
    Uchiyama T, Tanizawa T, Ito A, Endo N, Takahashi HE (1999) Microstructure of the trabecula and cortex of iliac bone in primary hyperparathyroidism patients determined using histomorphometry and node-strut analysis. J Bone Miner Metab 17(4):283–288CrossRefPubMedGoogle Scholar
  35. 35.
    Carvalho CG, Pereira RC, Gales B, Salusky IB, Wesseling-Perry K (2015) Cortical and trabecular bone in pediatric end-stage kidney disease. Pediatric nephrology (Berlin, Germany) 30(3):497–502. doi: 10.1007/s00467-014-2942-0
  36. 36.
    Carvalho C, Magalhaes J, Pereira L, Simoes-Silva L, Castro-Ferreira I, Frazao JM (2016) Evolution of bone disease after kidney transplantation: A prospective histomorphometric analysis of trabecular and cortical bone. Nephrology (Carlton, Vic) 21(1):55–61. doi: 10.1111/nep.12570
  37. 37.
    Streeten EA (2015) Bone as a classic endocrine organ: Interactions with non-bone tissues. Rev Endocr Metab Disord 16(2):77–78. doi: 10.1007/s11154-015-9317-0 CrossRefPubMedGoogle Scholar
  38. 38.
    Guntur AR, Rosen CJ (2012) Bone as an endocrine organ. Endocr Pract 18(5):758–762. doi: 10.4158/EP12141.RA CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Miller PD (2014) Chronic kidney disease and the skeleton. Bone Res 2:14044. doi: 10.1038/boneres.2014.44 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pereira RC, Juppner H, Azucena-Serrano CE, Yadin O, Salusky IB, Wesseling-Perry K (2009) Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone 45(6):1161–1168. doi: 10.1016/j.bone.2009.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Delanaye P, Souberbielle JC, Lafage-Proust MH, Jean G, Cavalier E (2014) Can we use circulating biomarkers to monitor bone turnover in CKD haemodialysis patients? Hypotheses and facts. Nephrol Dial Transpl 29(5):997–1004. doi: 10.1093/Ndt/Gft275 CrossRefGoogle Scholar
  42. 42.
    Alderson HV, Ritchie JP, Green D, Chiu D, Kalra PA (2013) Potential for biomarkers of chronic kidney disease-mineral bone disorder to improve patient care. Nephron Clin Pract 124(3–4):141–150. doi: 10.1159/000356394 CrossRefPubMedGoogle Scholar
  43. 43.
    Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H, Hruska KA (2014) Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int 85(1):142–150. doi: 10.1038/ki.2013.271 CrossRefPubMedGoogle Scholar
  44. 44.
    Weivoda MM, Oursler MJ (2014) Developments in sclerostin biology: regulation of gene expression, mechanisms of action, and physiological functions. Curr Osteoporos Rep 12(1):107–114. doi: 10.1007/s11914-014-0188-1 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Schiavi SC (2015) Sclerostin and CKD-MBD. Curr Osteoporos Rep 13(3):159–165. doi: 10.1007/s11914-015-0263-2 CrossRefPubMedGoogle Scholar
  46. 46.
    Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Löwik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19(13):1842–1844PubMedGoogle Scholar
  47. 47.
    de Oliveira RA, Barreto FC, Mendes M, dos Reis LM, Castro JH, Britto ZM, Marques ID, Carvalho AB, Moysés RM, Jorgetti V (2015) Peritoneal dialysis per se is a risk factor for sclerostin-associated adynamic bone disease. Kidney Int 87(5):1039–1045CrossRefPubMedGoogle Scholar
  48. 48.
    Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CA, Lash JP, Hsu CY, Leonard MB, Wolf M (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79(12):1370–1378. doi: 10.1038/ki.2011.47 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wesseling-Perry K, Juppner H (2013) The osteocyte in CKD: new concepts regarding the role of FGF23 in mineral metabolism and systemic complications. Bone 54(2):222–229. doi: 10.1016/j.bone.2012.10.008 CrossRefPubMedGoogle Scholar
  50. 50.
    Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, Kozai K, Tanne K, Aubin JE, Maeda N (2007) Mineralized tissue cells are a principal source of FGF23. Bone 40(6):1565–1573. doi: 10.1016/j.bone.2007.01.017 CrossRefPubMedGoogle Scholar
  51. 51.
    Shalhoub V, Ward SC, Sun B, Stevens J, Renshaw L, Hawkins N, Richards WG (2011) Fibroblast growth factor 23 (FGF23) and alpha-klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization. Calcif Tissue Int 89(2):140–150. doi: 10.1007/s00223-011-9501-5 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wesseling-Perry K, Pereira RC, Wang H, Elashoff RM, Sahney S, Gales B, Juppner H, Salusky IB (2009) Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Meta 94(2):511–517. doi: 10.1210/jc.2008-0326 CrossRefGoogle Scholar
  53. 53.
    Clemens TL, Cormier S, Eichinger A, Endlich K, Fiaschi-Taesch N, Fischer E, Friedman PA, Karaplis AC, Massfelder T, Rossert J, Schluter KD, Silve C, Stewart AF, Takane K, Helwig JJ (2001) Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 134(6):1113–1136. doi: 10.1038/sj.bjp.0704378 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhu J, Siclari VA, Liu F, Spatz JM, Chandra A, Divieti Pajevic P, Qin L (2012) Amphiregulin-EGFR signaling mediates the migration of bone marrow mesenchymal progenitors toward PTH-stimulated osteoblasts and osteocytes. PLoS One 7(12):e50099. doi: 10.1371/journal.pone.0050099 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Pereira RC, Delany AM, Khouzam NM, Bowen RE, Freymiller EG, Salusky IB, Wesseling-Perry K (2015) Primary osteoblast-like cells from patients with end-stage kidney disease reflect gene expression, proliferation, and mineralization characteristics ex vivo. Kidney Int 87(3):593–601. doi: 10.1038/ki.2014.347 CrossRefPubMedGoogle Scholar
  56. 56.
    Mazzaferro S, Tartaglione L, Rotondi S, Bover J, Goldsmith D, Pasquali M (2014) News on biomarkers in CKD-MBD. Semin Nephrol 34(6):598–611. doi: 10.1016/j.semnephrol.2014.09.006 CrossRefPubMedGoogle Scholar
  57. 57.
    Doumouchtsis K, Perrea D, Doumouchtsis S, Tziamalis M, Poulakou M, Vlachos I, Kostakis A (2009) Regulatory effect of parathyroid hormone on sRANKL-osteoprotegerin in hemodialysis patients with renal bone disease. Ther Apher Dial 13(1):49–55. doi: 10.1111/j.1744-9987.2009.00653.x CrossRefPubMedGoogle Scholar
  58. 58.
    Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1. doi: 10.1186/ar2165 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Siomou E, Challa A, Printza N, Giapros V, Petropoulou F, Mitsioni A, Papachristou F, Stefanidis CJ (2011) Serum osteoprotegerin, RANKL and fibroblast growth factor-23 in children with chronic kidney disease. Pediatric nephrology (Berlin, Germany) 26(7):1105–1114. doi: 10.1007/s00467-011-1870-5
  60. 60.
    West SL, Lok CE, Jamal SA (2014) Osteoprotegerin and fractures in men and women with chronic kidney disease. J Bone Miner Metab 32(4):428–433. doi: 10.1007/s00774-013-0506-1 CrossRefPubMedGoogle Scholar
  61. 61.
    Evenepoel P, D’Haese P, Brandenburg V (2015) Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int 88(2):235–240. doi: 10.1038/ki.2015.156 CrossRefPubMedGoogle Scholar
  62. 62.
    Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19(2):179–192. doi: 10.1038/nm.3074 CrossRefPubMedGoogle Scholar
  63. 63.
    Zorn AM (2001) Wnt signalling: antagonistic Dickkopfs. Curr Biol 11(15):R592–R595CrossRefPubMedGoogle Scholar
  64. 64.
    Fang Y, Ginsberg C, Seifert M, Agapova O, Sugatani T, Register TC, Freedman BI, Monier-Faugere MC, Malluche H, Hruska KA (2014) CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol JASN 25(8):1760–1773. doi: 10.1681/ASN.2013080818 CrossRefPubMedGoogle Scholar
  65. 65.
    Martin A, David V, Quarles LD (2012) Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 92(1):131–155. doi: 10.1152/physrev.00002.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Mineral Res Off J Am Soc Bone Mineral Res 16(11):2017–2026. doi: 10.1359/jbmr.2001.16.11.2017 CrossRefGoogle Scholar
  67. 67.
    Nampei A, Hashimoto J, Hayashida K, Tsuboi H, Shi K, Tsuji I, Miyashita H, Yamada T, Matsukawa N, Matsumoto M, Morimoto S, Ogihara T, Ochi T, Yoshikawa H (2004) Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone. J Bone Miner Metab 22(3):176–184. doi: 10.1007/s00774-003-0468-9 CrossRefPubMedGoogle Scholar
  68. 68.
    MacDougall M, Simmons D, Gu TT, Dong J (2002) MEPE/OF45, a new dentin/bone matrix protein and candidate gene for dentin diseases mapping to chromosome 4q21. Connect Tissue Res 43(2–3):320–330CrossRefPubMedGoogle Scholar
  69. 69.
    Kang JH, Ko HM, Moon JS, Yoo HI, Jung JY, Kim MS, Koh JT, Kim WJ, Kim SH (2014) Osteoprotegerin expressed by osteoclasts: an autoregulator of osteoclastogenesis. J Dent Res 93(11):1116–1123. doi: 10.1177/0022034514552677 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Nephrology 2016

Authors and Affiliations

  • Catarina Carvalho
    • 1
    • 2
    • 3
    • 4
  • Catarina Moniz Alves
    • 1
    • 2
    • 3
  • João Miguel Frazão
    • 1
    • 2
    • 3
    • 5
  1. 1.Instituto de Investigação E Inovação em SaúdeUniversidade do PortoPortoPortugal
  2. 2.INEBInstituto Nacional de Engenharia Biomédica, Universidade do PortoPortoPortugal
  3. 3.Department of RenalUrological and Infectious Diseases, Faculty of Medicine of University of PortoPortoPortugal
  4. 4.Department of NephrologyBraga HospitalBragaPortugal
  5. 5.Department of NephrologySão João Hospital CenterPortoPortugal

Personalised recommendations