Journal of Nephrology

, Volume 29, Issue 1, pp 45–51 | Cite as

Heritability of dietary traits that contribute to nephrolithiasis in a cohort of adult sibships

  • John C. Lieske
  • Stephen T. Turner
  • Samuel N. Edeh
  • Erin B. Ware
  • Sharon L. R. Kardia
  • Jennifer A. Smith
Original Article



Kidney stones and their risk factors aggregate in families, yet few studies have estimated the heritability of known risk factors.


Estimate the heritability of dietary risk factors for kidney stones.


Dietary intakes were assessed using the Viocare Food Frequency Questionnaire in sibships enrolled in the Rochester, MN cohort of the Genetic Epidemiology Network of Arteriopathy. Measures of urinary supersaturation were determined using 24 h urine samples. Heritabilities and genetic correlations were estimated using variance components methods.


Samples were available from 620 individuals (262 men, 358 women, mean (SD) age 65 (9) years). Dietary intakes of protein, sucrose, and calcium had strong evidence for heritability (p < 0.01) after adjustment for age, sex, height and weight. Among the significantly heritable dietary intakes (p < 0.05), genetic factors explained 22–50 % of the inter-individual variation. Significant genetic correlations were observed among dietary protein, dietary sucrose, and dietary calcium intakes (p < 0.001).


Evidence from this relatively large cohort suggests a strong heritable component to dietary intakes of protein, sucrose and calcium that contributes to nephrolithiasis risk. Further efforts to understand the interplay of genetic and environmental risk factors in kidney stone pathogenesis are warranted.


Diet Heritability Nephrolithiasis Supersaturation 



This work was supported by R01 DK077950, R01 DK073537, U01 HL054457, R01 HL087660, the Mayo Clinic O’Brien Urology Research Center P50 DK083007, and Grant Number UL1 TR000135 from the National Center for Advancing Translational Sciences (NCATS), all funded by the National Institutes of Health. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Conflict of interest

No authors declare a conflict of interest.

Ethical standard

This study was approved by the Mayo Clinic Institutional Review Board.

Informed consent

All participants provided informed consent prior to enrolling and participating in the study.


  1. 1.
    Scales CD Jr, Smith AC, Hanley JM, Saigal CS (2012) Prevalence of kidney stones in the United States. Eur Urol 62(1):160–165. doi: 10.1016/j.eururo.2012.03.052 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Parks JH, Coward M, Coe FL (1997) Correspondence between stone composition and urine supersaturation in nephrolithiasis. Kidney Int 51(3):894–900PubMedCrossRefGoogle Scholar
  3. 3.
    Lieske JC, Turner ST, Edeh SN, Smith JA, Kardia SL (2014) Heritability of urinary traits that contribute to nephrolithiasis. Clin J Am Soc Nephrol. doi: 10.2215/CJN.08210813
  4. 4.
    Martin LJ, Lee SY, Couch SC, Morrison J, Woo JG (2011) Shared genetic contributions of fruit and vegetable consumption with BMI in families 20 y after sharing a household. Am J Clin Nutr 94(4):1138–1143. doi: 10.3945/ajcn.111.015461 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    de Castro JM (1993) A twin study of genetic and environmental influences on the intake of fluids and beverages. Physiol Behav 54(4):677–687PubMedCrossRefGoogle Scholar
  6. 6.
    de Castro JM (1993) Independence of genetic influences on body size, daily intake, and meal patterns of humans. Physiol Behav 54(4):633–639PubMedCrossRefGoogle Scholar
  7. 7.
    de Castro JM (1993) Genetic influences on daily intake and meal patterns of humans. Physiol Behav 53(4):777–782PubMedCrossRefGoogle Scholar
  8. 8.
    Almasy L, Dyer TD, Blangero J (1997) Bivariate quantitative trait linkage analysis: pleiotropy versus co-incident linkages. Genet Epidemiol 14(6):953–958PubMedCrossRefGoogle Scholar
  9. 9.
    Ibsen H, Olsen MH, Wachtell K, Borch-Johnsen K, Lindholm LH, Mogensen CE, Dahlof B, Devereux RB, de Faire U, Fyhrquist F, Julius S, Kjeldsen SE, Lederballe-Pedersen O, Nieminen MS, Omvik P, Oparil S, Wan Y (2005) Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients: losartan intervention for endpoint reduction in hypertension study. Hypertension 45(2):198–202PubMedCrossRefGoogle Scholar
  10. 10.
    Daniels PR, Kardia SL, Hanis CL, Brown CA, Hutchinson R, Boerwinkle E, Turner ST (2004) Familial aggregation of hypertension treatment and control in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Am J Med 116(10):676–681. doi: 10.1016/j.amjmed.2003.12.032 PubMedCrossRefGoogle Scholar
  11. 11.
    Kristal AR, Kolar AS, Fisher JL, Plascak JJ, Stumbo PJ, Weiss R, Paskett ED (2014) Evaluation of web-based, self-administered, graphical food frequency questionnaire. J Acad Nutr Diet 114(4):613–621. doi: 10.1016/j.jand.2013.11.017 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    R Development Core Team (2008) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0Google Scholar
  13. 13.
    Raudenbush SW, Bryk AS (2002) Hierarchical linear models: applications and data analysis methods, 2nd edn. Sage Publications Inc, Thousand OaksGoogle Scholar
  14. 14.
    Maj A (2011) lmmfit: goodness-of-fit-measures for linear mixed models with one-level-groupingGoogle Scholar
  15. 15.
    Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62(5):1198–1211PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Curhan GC, Willett WC, Rimm EB, Stampfer MJ (1993) A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones [see comments]. N Engl J Med 328:833–838PubMedCrossRefGoogle Scholar
  17. 17.
    Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ (1997) Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Int Med 266(7):497–504CrossRefGoogle Scholar
  18. 18.
    Taylor EN, Fung TT, Curhan GC (2009) DASH-style diet associates with reduced risk for kidney stones. J Am Soc Nephrol 20(10):2253–2259. doi: 10.1681/ASN.2009030276 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Taylor EN, Stampfer MJ, Curhan GC (2004) Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J Am Soc Nephrol 15(12):3225–3232PubMedCrossRefGoogle Scholar
  20. 20.
    Andersen DA (1968) Historical and geographical differences in the pattern of incidence of urinary renal stones considered in relation to possible aetiological factors. In: Hodgkisson A, Nordin BEC (eds) Proceedings of the renal stone research symposium. Churchill Livingston, p 7Google Scholar
  21. 21.
    Robertson WG, Peacock M, Heyburn PJ, Hanes FA (1980) Epidemiological risk factors in calcium stone disease. Scand J Urol Nephrol Suppl 53:15–28PubMedGoogle Scholar
  22. 22.
    Curhan GC, Willet WC, Speizer FE, Stampfer MJ (1999) Intake of vitamins B6 and C and the risk of kidney stones in women. J Am Soc Nephrol 10:840–845PubMedGoogle Scholar
  23. 23.
    Curhan GC, Willet WC, Rimm EB, Stampfer MJ (1996) A prospective study of the intake of vitamins C and B6, and the risk of kidney stones in men. J Urol 155:1847–1851PubMedCrossRefGoogle Scholar
  24. 24.
    Faith MS, Rhea SA, Corley RP, Hewitt JK (2008) Genetic and shared environmental influences on children’s 24-h food and beverage intake: sex differences at age 7 y. Am J Clin Nutr 87(4):903–911PubMedGoogle Scholar
  25. 25.
    Zaitlen N, Kraft P, Patterson N, Pasaniuc B, Bhatia G, Pollack S, Price AL (2013) Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS Genet 9(5):e1003520. doi: 10.1371/journal.pgen.1003520 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cooke LJ, Haworth CM, Wardle J (2007) Genetic and environmental influences on children’s food neophobia. Am J Clin Nutr 86(2):428–433PubMedGoogle Scholar
  27. 27.
    Garcia-Bailo B, Toguri C, Eny KM, El-Sohemy A (2009) Genetic variation in taste and its influence on food selection. OMICS 13(1):69–80. doi: 10.1089/omi.2008.0031 PubMedCrossRefGoogle Scholar
  28. 28.
    Tepper BJ (2008) Nutritional implications of genetic taste variation: the role of PROP sensitivity and other taste phenotypes. Annu Rev Nutr 28:367–388. doi: 10.1146/annurev.nutr.28.061807.155458 PubMedCrossRefGoogle Scholar
  29. 29.
    Tepper BJ, Neilland M, Ullrich NV, Koelliker Y, Belzer LM (2011) Greater energy intake from a buffet meal in lean, young women is associated with the 6-n-propylthiouracil (PROP) non-taster phenotype. Appetite 56(1):104–110. doi: 10.1016/j.appet.2010.11.144 PubMedCrossRefGoogle Scholar
  30. 30.
    Mattar R, de Campos Mazo DF, Carrilho FJ (2012) Lactose intolerance: diagnosis, genetic, and clinical factors. Clin Exp Gastroenterol 5:113–121. doi: 10.2147/CEG.S32368 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Italian Society of Nephrology 2015

Authors and Affiliations

  • John C. Lieske
    • 1
    • 2
  • Stephen T. Turner
    • 1
  • Samuel N. Edeh
    • 1
  • Erin B. Ware
    • 3
  • Sharon L. R. Kardia
    • 3
  • Jennifer A. Smith
    • 3
  1. 1.Division of Nephrology and HypertensionMayo ClinicRochesterUSA
  2. 2.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA
  3. 3.Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborUSA

Personalised recommendations