Journal of Nephrology

, Volume 28, Issue 6, pp 679–689 | Cite as

Interfering parameters in the determination of urinary globotriaosylceramide (Gb3) in patients with chronic kidney disease

  • Martina GagglEmail author
  • Marlene Hofer
  • Stefanie Weidner
  • Julia Kleinert
  • Günter Fauler
  • Manfred Wallner
  • Peter Kotanko
  • Eduard Paschke
  • Gere Sunder-Plassmann
Original Article



Globotriaosylceramide (Gb3, CD77) represents a pivotal part of the cell membrane. Measuring the urinary Gb3 content can be used to screen patients with chronic kidney disease (CKD) for Fabry disease, a disorder caused by hampered Gb3 degradation. However, little is known about factors influencing urinary Gb3 excretion other than Fabry disease. The aim of the present study was to identify routine diagnostic parameters as predictors of urinary Gb3 excretion in patients with CKD.


Our study included 609 subjects with CKD stage I–V. We analyzed the influence of age, gender, renal function, urinary cell content and chemical characteristics on urinary Gb3 concentrations (total Gb3, Gb3-24 isoform, and Gb3-24:18 isoform ratio), determined by direct electrospray ionization mass spectrometry.


In 609 subjects the median total urinary Gb3 was 233 ng/mg and the Gb3-24:18 isoform ratio was 1.2. Twenty-one patients, none of whom had Fabry disease, had a Gb3-24:18 isoform ratio ≥2.3. Females excreted a higher total amount of Gb3, but the Gb3-24:18 isoform ratio was comparable to males. Renal function and age had no influence on total Gb3, Gb3 isoforms or the ratio. Only a distinct load of bacteria and leukocytes was associated with an increased Gb3 excretion. Urinary leukocytes, erythrocytes, bacteria, or protein content did not affect the Gb3-24:18 isoform ratio.


The Gb3-24:18 isoform ratio is unaffected by several potential influencing variables and may thus be applied for screening for Fabry disease in unselected cohorts of patients presenting with CKD.


Chronic kidney disease Fabry disease Globotriaosylceramide Lysosomal storage disorder 



We acknowledge the help of Miriam Kunst, Ingrid Jachimow, Sylvia Taxer, Karin Voith, Danica Doric, Maria Villaluz, Gabi Rath, Violeta Tanacovic in conducting the study. Laboratory analyses were supported by an unrestricted grant from Sanofi-Genzyme (Sanofi-Genzyme Austria G.m.b.H., Vienna, Austria).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The ethics committee of the Medical University of Vienna approved the study.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

40620_2015_193_MOESM1_ESM.tif (4.1 mb)
Supplementary material 1 (TIFF 4156 kb)
40620_2015_193_MOESM2_ESM.tif (18.2 mb)
Supplementary material 2 (TIFF 18648 kb)


  1. 1.
    Nudelman E, Kannagi R, Hakomori S, Parsons M, Lipinski M, Wiels J, Fellous M, Tursz T (1983) A glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody. Science 220:509–511CrossRefPubMedGoogle Scholar
  2. 2.
    Fletcher KS, Bremer EG, Schwarting GA (1979) P blood group regulation of glycosphingolipid levels in human erythrocytes. J Biol Chem 254:11196–11198PubMedGoogle Scholar
  3. 3.
    Waddell T, Head S, Petric M, Cohen A, Lingwood C (1988) Globotriosyl ceramide is specifically recognized by the Escherichia coli verocytotoxin 2. Biochem Biophys Res Commun 152:674–679 (pii: S0006-291X(88)80091-3)CrossRefPubMedGoogle Scholar
  4. 4.
    Lingwood CA, Branch DR (2011) The role of glycosphingolipids in HIV/AIDS. Discov Med 11:303–313PubMedGoogle Scholar
  5. 5.
    Fuller M, Sharp PC, Rozaklis T, Whitfield PD, Blacklock D, Hopwood JJ, Meikle PJ (2005) Urinary lipid profiling for the identification of fabry hemizygotes and heterozygotes. Clin Chem 51:688–694. doi: 10.1373/clinchem.2004.041418 CrossRefPubMedGoogle Scholar
  6. 6.
    Mills K, Morris P, Lee P, Vellodi A, Waldek S, Young E, Winchester B (2005) Measurement of urinary CDH and CTH by tandem mass spectrometry in patients hemizygous and heterozygous for Fabry disease. J Inherit Metab Dis 28:35–48. doi: 10.1007/s10545-005-5263-4 CrossRefPubMedGoogle Scholar
  7. 7.
    Paschke E, Fauler G, Winkler H, Schlagenhauf A, Plecko B, Erwa W, Breunig F, Urban W, Vujkovac B, Sunder-Plassmann G, Kotanko P (2011) Urinary total globotriaosylceramide and isoforms to identify women with Fabry disease: a diagnostic test study. Am J Kidney Dis 57:673–681. doi: 10.1053/j.ajkd.2010.10.046 CrossRefPubMedGoogle Scholar
  8. 8.
    Fauler G, Rechberger GN, Devrnja D, Erwa W, Plecko B, Kotanko P, Breunig F, Paschke E (2005) Rapid determination of urinary globotriaosylceramide isoform profiles by electrospray ionization mass spectrometry using stearoyl-d35-globotriaosylceramide as internal standard. Rapid Commun Mass Spectrom 19:1499–1506. doi: 10.1002/rcm.1948 CrossRefPubMedGoogle Scholar
  9. 9.
    An D, Na C, Bielawski J, Hannun YA, Kasper DL (2011) Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proc Natl Acad Sci USA 108(Suppl 1):4666–4671. doi: 10.1073/pnas.1001501107 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kotanko P, Kramar R, Devrnja D, Paschke E, Voigtländer T, Auinger M, Pagliardini S, Spada M, Demmelbauer K, Lorenz M, Hauser AC, Kofler HJ, Lhotta K, Neyer U, Pronai W, Wallner M, Wieser C, Wiesholzer M, Zodl H, Födinger M, Sunder-Plassmann G (2004) Results of a nationwide screening for Anderson-Fabry disease among dialysis patients. J Am Soc Nephrol 15:1323–1329. doi: 10.1097/01.ASN.0000124671.61963.1E CrossRefPubMedGoogle Scholar
  11. 11.
    Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R, van Roomen C, Mirzaian M, Wijburg FA, Linthorst GE, Vedder AC, Rombach SM, Cox-Brinkman J, Somerharju P, Boot RG, Hollak CE, Brady RO, Poorthuis BJ (2008) Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA 105:2812–2817. doi: 10.1073/pnas.0712309105 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Auray-Blais C, Ntwari A, Clarke JT, Warnock DG, Oliveira JP, Young SP, Millington DS, Bichet DG, Sirrs S, West ML, Casey R, Hwu WL, Keutzer JM, Zhang XK, Gagnon R (2012) How well does urinary lyso-Gb3 function as a biomarker in Fabry disease? Clin Chim Acta 411:1906–1914. doi: 10.1016/j.cca.2010.07.038 CrossRefGoogle Scholar
  13. 13.
    Rombach SM, Dekker N, Bouwman MG, Linthorst GE, Zwinderman AH, Wijburg FA, Kuiper S, Vd Bergh Weerman MA, Groener JE, Poorthuis BJ, Hollak CE, Aerts JM (2010) Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta 1802:741–748. doi: 10.1016/j.bbadis.2010.05.003 CrossRefPubMedGoogle Scholar
  14. 14.
    Auray-Blais C, Boutin M, Gagnon R, Dupont FO, Lavoie P, Clarke JT (2012) Urinary globotriaosylsphingosine-related biomarkers for Fabry disease targeted by metabolomics. Anal Chem 84:2745–2753. doi: 10.1021/ac203433e CrossRefPubMedGoogle Scholar
  15. 15.
    Hozumi I, Nishizawa M, Ariga T, Miyatake T (1990) Biochemical and clinical analysis of accumulated glycolipids in symptomatic heterozygotes of angiokeratoma corporis diffusum (Fabry’s disease) in comparison with hemizygotes. J Lipid Res 31:335–340PubMedGoogle Scholar
  16. 16.
    Schiffmann R, Waldek S, Benigni A, Auray-Blais C (2010) Biomarkers of Fabry disease nephropathy. Clin J Am Soc Nephrol 5:360–364. doi: 10.2215/CJN.06090809 CrossRefPubMedGoogle Scholar
  17. 17.
    Vance DE, Sweeley CC (1967) Quantitative determination of the neutral glycosyl ceramides in human blood. J Lipid Res 8:621–630PubMedGoogle Scholar
  18. 18.
    Young E, Mills K, Morris P, Vellodi A, Lee P, Waldek S, Winchester B (2005) Is globotriaosylceramide a useful biomarker in Fabry disease? Acta Paediatr Suppl 94:51–54 (discussion 37–58)CrossRefPubMedGoogle Scholar
  19. 19.
    Mills K, Johnson A, Winchester B (2002) Synthesis of novel internal standards for the quantitative determination of plasma ceramide trihexoside in Fabry disease by tandem mass spectrometry. FEBS Lett 515:171–176 (pii: S0014579302024912)CrossRefPubMedGoogle Scholar
  20. 20.
    Dawson G, Kruski AW, Scanu AM (1976) Distribution of glycosphingolipids in the serum lipoproteins of normal human subjects and patients with hypo- and hyperlipidemias. J Lipid Res 17:125–131PubMedGoogle Scholar
  21. 21.
    Vedder AC, Linthorst GE, van Breemen MJ, Groener JE, Bemelman FJ, Strijland A, Mannens MM, Aerts JM, Hollak CE (2007) The Dutch Fabry cohort: diversity of clinical manifestations and Gb3 levels. J Inherit Metab Dis 30:68–78. doi: 10.1007/s10545-006-0484-8 CrossRefPubMedGoogle Scholar
  22. 22.
    Durant B, Forni S, Sweetman L, Brignol N, Meng XL, Benjamin ER, Schiffmann R, Shen JS (2011) Sex differences of urinary and kidney globotriaosylceramide and lyso-globotriaosylceramide in Fabry mice. J Lipid Res 52:1742–1746. doi: 10.1194/jlr.M017178 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    McCluer RH, Williams MA, Gross SK, Meisler MH (1981) Testosterone effects on the induction and urinary excretion of mouse kidney glycosphingolipids associated with lysosomes. J Biol Chem 256:13112–13120PubMedGoogle Scholar
  24. 24.
    Koshida H, Takeda R, Miyamori I (1998) Lisinopril decreases plasma free testosterone in male hypertensive patients and increases sex hormone binding globulin in female hypertensive patients. Hypertens Res 21:279–282CrossRefPubMedGoogle Scholar
  25. 25.
    Schiffmann R, Forni S, Swift C, Brignol N, Wu X, Lockhart DJ, Blankenship D, Wang X, Grayburn PA, Taylor MR, Lowes BD, Fuller M, Benjamin ER, Sweetman L (2014) Risk of death in heart disease is associated with elevated urinary globotriaosylceramide. J Am Heart Assoc 3:e000394. doi: 10.1161/JAHA.113.000394 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Kuchar L, Asfaw B, Poupetova H, Honzikova J, Turecek F, Ledvinova J (2013) Direct tandem mass spectrometric profiling of sulfatides in dry urinary samples for screening of metachromatic leukodystrophy. Clin Chim Acta 425:153–159. doi: 10.1016/j.cca.2013.06.027 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Forni S, Fu X, Schiffmann R, Sweetman L (2009) Falsely elevated urinary Gb3 (globotriaosylceramide, CTH, GL3). Mol Genet Metab 97:91. doi: 10.1016/j.ymgme.2009.01.011 CrossRefPubMedGoogle Scholar
  28. 28.
    Auray-Blais C, Millington DS, Barr C, Young SP, Mills K, Clarke JT (2009) Gb(3)/creatinine biomarkers for Fabry disease: issues to consider. Mol Genet Metab 97:237. doi: 10.1016/j.ymgme.2009.04.006 CrossRefPubMedGoogle Scholar
  29. 29.
    Cable WJ, McCluer RH, Kolodny EH, Ullman MD (1982) Fabry disease: detection of heterozygotes by examination of glycolipids in urinary sediment. Neurology 32:1139–1145CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Nephrology 2015

Authors and Affiliations

  • Martina Gaggl
    • 1
    Email author
  • Marlene Hofer
    • 1
  • Stefanie Weidner
    • 1
  • Julia Kleinert
    • 1
  • Günter Fauler
    • 2
  • Manfred Wallner
    • 3
  • Peter Kotanko
    • 4
  • Eduard Paschke
    • 5
  • Gere Sunder-Plassmann
    • 1
  1. 1.Department of Medicine III, Division of Nephrology and DialysisMedical University ViennaViennaAustria
  2. 2.Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University GrazGrazAustria
  3. 3.Department of Internal Medicine IV, Section of NephrologyKlinikum Wels-GrieskirchenWelsAustria
  4. 4.Renal Research InstituteNew YorkUSA
  5. 5.Department of PediatricsMedical University GrazGrazAustria

Personalised recommendations