Journal of Nephrology

, Volume 27, Issue 3, pp 339–344 | Cite as

Lower magnesium level associated with new-onset diabetes and pre-diabetes after kidney transplantation

  • Neetika GargEmail author
  • Janice Weinberg
  • Sandeep Ghai
  • Gitana Bradauskaite
  • Matthew Nuhn
  • Amitabh Gautam
  • Nilay Kumar
  • Jean Francis
  • Joline L. T. Chen
Original Article



Hypomagnesemia is associated with increased peripheral insulin resistance in the general population. It is frequently seen after renal transplantation. We examined its role as a risk factor for new-onset diabetes after transplantation (NODAT) and new-onset pre-diabetes after transplantation (NOPDAT).


A retrospective analysis of 138 previously non-diabetic renal transplant recipients was conducted. Cox and logistic regression analyses were performed to examine the associations between 1-month post-transplant serum magnesium level and subsequent diagnoses of NODAT/NOPDAT.


NODAT was diagnosed in 34 (24.6 %) and NOPDAT in 12 (8.7 %) patients. Median time to diagnosis of NODAT/NOPDAT was 20.4 months (interquartile range [IQR] 6.8–34.8). Median follow up for the entire group was 3.5 years (IQR 2.3–5.6). Mean magnesium level at 1 month after transplantation was significantly lower in patients subsequently diagnosed with NODAT/NOPDAT (1.60 ± 0.27 vs. 1.76 ± 0.29 mg/dl, p = 0.002). Cox regression analysis identified a trend towards developing NODAT/NOPDAT with lower baseline magnesium levels (hazard ratio 0.89 per 0.1 mg/dl increment in magnesium level, 95 % confidence interval [CI] = 0.78–1.01, p = 0.07); a stronger relationship between the two variables was seen at logistic regression analysis (odds ratio 0.81 per 0.1 mg/dl increment in serum magnesium (95 % CI 0.67–0.98, p = 0.03).


A lower magnesium level at 1 month after transplantation may be predictive of a subsequent diagnosis of glucose intolerance or diabetes in renal transplant recipients. Whether replenishing magnesium stores can prevent development of these disorders requires further investigation.


Magnesium Calcineurin inhibitors New onset diabetes mellitus New onset pre-diabetes Renal transplantation 


Conflict of interest

On behalf of all the authors, the corresponding author states there is no conflict of interest.


  1. 1.
    Cosio FG, Hickson LJ, Griffin MD, Stegall MD, Kudva Y (2008) Patient survival and cardiovascular risk after kidney transplantation: the challenge of diabetes. Am J Transpl 8(3):593–599CrossRefGoogle Scholar
  2. 2.
    Woodward RS, Schnitzler MA, Baty J et al (2003) Incidence and cost of new onset diabetes mellitus among U.S. wait-listed and transplanted renal allograft recipients. Am J Transpl 3(5):590–598CrossRefGoogle Scholar
  3. 3.
    Bee YM, Tan HC, Tay TL, Kee TY, Goh SY, Kek PC (2011) Incidence and risk factors for development of new-onset diabetes after kidney transplantation. Ann Acad Med Singap 40(4):160–167PubMedGoogle Scholar
  4. 4.
    Pham PT, Pham PM, Pham SV, Pham PA, Pham PC (2011) New onset diabetes after transplantation (NODAT): an overview. Diabetes Metab Syndr Obes. 4:175–186PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Eckhard M, Schindler RA, Renner FC et al (2009) New-onset diabetes mellitus after renal transplantation. Transpl Proc. 41(6):2544–2545CrossRefGoogle Scholar
  6. 6.
    Davidson J, Wilkinson A, Dantal J, et al (2003) New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation 75(10 Suppl):SS3–S24Google Scholar
  7. 7.
    Cosio FG, Kudva Y, van der Velde M et al (2005) New onset hyperglycemia and diabetes are associated with increased cardiovascular risk after kidney transplantation. Kidney Int 67(6):2415–2421PubMedCrossRefGoogle Scholar
  8. 8.
    Boerner BP, Shivaswamy V, Desouza CV, Larsen JL (2011) Diabetes and cardiovascular disease following kidney transplantation. Curr Diabetes Rev 7(4):221–234PubMedCrossRefGoogle Scholar
  9. 9.
    Hjelmesaeth J, Hartmann A, Leivestad T et al (2006) The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int 69(3):588–595PubMedCrossRefGoogle Scholar
  10. 10.
    Vincenti F, Friman S, Scheuermann E et al (2007) Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am J Transpl 7(6):1506–1514CrossRefGoogle Scholar
  11. 11.
    Drachenberg CB, Klassen DK, Weir MR et al (1999) Islet cell damage associated with tacrolimus and cyclosporine: morphological features in pancreas allograft biopsies and clinical correlation. Transplantation 68(3):396–402PubMedCrossRefGoogle Scholar
  12. 12.
    Redmon JB, Olson LK, Armstrong MB, Greene MJ, Robertson RP (1996) Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. J Clin Invest. 98(12):2786–2793PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Tamura K, Fujimura T, Tsutsumi T et al (1995) Transcriptional inhibition of insulin by FK506 and possible involvement of FK506 binding protein-12 in pancreatic beta-cell. Transplantation 59(11):1606–1613PubMedCrossRefGoogle Scholar
  14. 14.
    Lawrence MC, Bhatt HS, Watterson JM, Easom RA (2001) Regulation of insulin gene transcription by a Ca(2+)-responsive pathway involving calcineurin and nuclear factor of activated T cells. Mol Endocrinol 15(10):1758–1767PubMedCrossRefGoogle Scholar
  15. 15.
    Grafton G, Baxter MA (1992) The role of magnesium in diabetes mellitus. A possible mechanism for the development of diabetic complications. J Diabetes Complicat 6(2):143–149PubMedCrossRefGoogle Scholar
  16. 16.
    Tongyai S, Rayssiguier Y, Motta C, Gueux E, Maurois P, Heaton FW (1989) Mechanism of increased erythrocyte membrane fluidity during magnesium deficiency in weanling rats. Am J Physiol 257(2 Pt 1):C270–C276PubMedGoogle Scholar
  17. 17.
    Bugliani M, Masini M, Liechti R et al (2009) The direct effects of tacrolimus and cyclosporin A on isolated human islets: a functional, survival and gene expression study. Islets. 1(2):106–110PubMedCrossRefGoogle Scholar
  18. 18.
    Tillmann FP, Quack I, Schenk A, Grabensee B, Rump LC, Hetzel GR (2012) Prevalence and risk factors of pre-diabetes after renal transplantation: a single-centre cohort study in 200 consecutive patients. Nephrol Dial Transpl 27(8):3330–3337Google Scholar
  19. 19.
    Porrini E, Moreno JM, Osuna A et al (2008) Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. Transplantation 85(8):1133–1138PubMedCrossRefGoogle Scholar
  20. 20.
    Corica F, Corsonello A, Ientile R et al (2006) Serum ionized magnesium levels in relation to metabolic syndrome in type 2 diabetic patients. J Am Coll Nutr 25(3):210–215PubMedCrossRefGoogle Scholar
  21. 21.
    Allegra A, Corica F, Ientile R et al (1998) Plasma (total and ionized), erythrocyte and platelet magnesium levels in renal transplant recipients during cyclosporine and/or azathioprine treatment. Magnes Res 11(1):11–18PubMedGoogle Scholar
  22. 22.
    Guerrero-Romero F, Rascon-Pacheco RA, Rodriguez-Moran M, de la Pena JE, Wacher N (2008) Hypomagnesaemia and risk for metabolic glucose disorders: a 10-year follow-up study. Eur J Clin Invest 38(6):389–396PubMedCrossRefGoogle Scholar
  23. 23.
    Kao WH, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL (1999) Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Arch Intern Med 159(18):2151–2159PubMedCrossRefGoogle Scholar
  24. 24.
    Lima Mde L, Cruz T, Rodrigues LE et al (2009) Serum and intracellular magnesium deficiency in patients with metabolic syndrome—evidences for its relation to insulin resistance. Diabetes Res Clin Pract 83(2):257–262PubMedCrossRefGoogle Scholar
  25. 25.
    Tosiello L (1996) Hypomagnesemia and diabetes mellitus. A review of clinical implications. Arch Intern Med 156(11):1143–1148PubMedCrossRefGoogle Scholar
  26. 26.
    Chaudhary DP, Sharma R, Bansal DD (2010) Implications of magnesium deficiency in type 2 diabetes: a review. Biol Trace Elem Res 134(2):119–129PubMedCrossRefGoogle Scholar
  27. 27.
    Nadler JL, Buchanan T, Natarajan R, Antonipillai I, Bergman R, Rude R (1993) Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension 21(6 Pt 2):1024–1029PubMedCrossRefGoogle Scholar
  28. 28.
    Takaya J, Higashino H, Kobayashi Y (2004) Intracellular magnesium and insulin resistance. Magnes Res 17(2):126–136PubMedGoogle Scholar
  29. 29.
    Guerrero-Romero F, Tamez-Perez HE, Gonzalez-Gonzalez G et al (2004) Oral magnesium supplementation improves insulin sensitivity in non-diabetic subjects with insulin resistance. A double-blind placebo-controlled randomized trial. Diabetes Metab. 30(3):253–258PubMedCrossRefGoogle Scholar
  30. 30.
    Lopez-Ridaura R, Willett WC, Rimm EB et al (2004) Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care 27(1):134–140PubMedCrossRefGoogle Scholar
  31. 31.
    Rodriguez-Moran M, Guerrero-Romero F (2003) Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care 26(4):1147–1152PubMedCrossRefGoogle Scholar
  32. 32.
    Song Y, Manson JE, Buring JE, Liu S (2004) Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care 27(1):59–65PubMedCrossRefGoogle Scholar
  33. 33.
    Song Y, He K, Levitan EB, Manson JE, Liu S (2006) Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabet Med 23(10):1050–1056PubMedCrossRefGoogle Scholar
  34. 34.
    Vannini SD, Mazzola BL, Rodoni L et al (1999) Permanently reduced plasma ionized magnesium among renal transplant recipients on cyclosporine. Transpl Int 12(4):244–249PubMedCrossRefGoogle Scholar
  35. 35.
    Mazzola BL, Vannini SD, Truttmann AC et al (2003) Long-term calcineurin inhibition and magnesium balance after renal transplantation. Transpl Int 16(2):76–81PubMedCrossRefGoogle Scholar
  36. 36.
    Nijenhuis T, Hoenderop JG, Bindels RJ (2004) Downregulation of Ca(2+) and Mg(2+) transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol 15(3):549–557PubMedCrossRefGoogle Scholar
  37. 37.
    Van Laecke S, Van Biesen W, Verbeke F, De Bacquer D, Peeters P, Vanholder R (2009) Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. Am J Transpl 9(9):2140–2149CrossRefGoogle Scholar
  38. 38.
    American Diabetes A (2012) Diagnosis and classification of diabetes mellitus. Diabetes Care 35 Suppl 1:S64–S71Google Scholar
  39. 39.
    Witkowski M, Hubert J, Mazur A (2011) Methods of assessment of magnesium status in humans: a systematic review. Magnes Res 24(4):163–180PubMedGoogle Scholar
  40. 40.
    Santos L, Rodrigo E, Pinera C et al (2010) Elevated serum gamma-glutamyltransferase and hypomagnesemia are not related with new-onset diabetes after transplantation. Transpl Proc 42(8):2914–2916CrossRefGoogle Scholar
  41. 41.
    Osorio JM, Bravo J, Perez A, Ferreyra C, Osuna A (2010) Magnesemia in renal transplant recipients: relation with immunosuppression and posttransplant diabetes. Transpl Proc 42(8):2910–2913CrossRefGoogle Scholar

Copyright information

© Italian Society of Nephrology 2014

Authors and Affiliations

  • Neetika Garg
    • 1
    Email author
  • Janice Weinberg
    • 2
  • Sandeep Ghai
    • 3
  • Gitana Bradauskaite
    • 3
  • Matthew Nuhn
    • 4
  • Amitabh Gautam
    • 4
  • Nilay Kumar
    • 5
  • Jean Francis
    • 3
  • Joline L. T. Chen
    • 3
  1. 1.Department of Internal MedicineBoston University Medical CenterBostonUSA
  2. 2.Department of BiostatisticsBoston University School of Public HealthBostonUSA
  3. 3.Renal Section, Department of MedicineBoston UniversityBostonUSA
  4. 4.Department of Transplant SurgeryBoston University Medical CenterBostonUSA
  5. 5.Department of MedicineCambridge Health Alliance, Harvard Medical SchoolCambridgeUSA

Personalised recommendations