Journal of Nephrology

, Volume 27, Issue 3, pp 247–256 | Cite as

Genetic determinants of renal transplant outcome: where do we stand?

  • Paul J. Phelan
  • Peter J. Conlon
  • Matthew A. Sparks
Review

Abstract

Kidney transplantation has become the preferred method of renal replacement. However, the rate of long term allograft survival has not changed over the last decade. Donor and recipient genetic interplay influences kidney transplant outcome but our knowledge of these complex interactions is limited. Until recently, investigations have been limited to small candidate gene studies, usually restricted to allograft recipients. Genome-wide association studies have been slow to emerge in transplantation but the first has recently been reported and will be reviewed here. Much larger studies involving donor and recipients pairs are ongoing. We are now entering the era of epigenetics and whole genome sequencing which will hopefully provide a more in-depth knowledge of the genetic influences on renal transplant outcome. This may lead to a more accurate assessment of post-transplant risk, potentially allowing for the development of risk predication models leading to a more personalized approach to kidney transplant care. In this article, we examine the current and emerging literature in the field and discuss the limitations of current studies and technologies.

Keywords

Acute rejection Genetics GWAS Kidney transplantation Outcome SNP 

Notes

Acknowledgments

We would like to thank Prof. Gerhard Opelz for permission to use Fig. 1 from the Collaborative Transplant Study.

Conflict of interest

None.

References

  1. 1.
    Opelz G, Terasaki PI (1977) Studies on the strength of HLA antigens in related donor kidney transplants. Transplantation 24(2):106–111PubMedCrossRefGoogle Scholar
  2. 2.
    Opelz G, Mickey MR, Terasaki PI (1977) HLA matching and cadaver kidney transplant survival in North America: influence of center variation and presensitization. Transplantation 23(6):490–497PubMedCrossRefGoogle Scholar
  3. 3.
    Kaneku HK, Terasaki PI (2006) Thirty year trend in kidney transplants: UCLA and UNOS Renal Transplant Registry. Clin Transpl 2006:1–27Google Scholar
  4. 4.
    Martins L, Fonseca I, Sousa S, Matos C, Santos J, Dias L, Henriques AC, Sarmento AM, Cabrita A (2007) The influence of HLA mismatches and immunosuppression on kidney graft survival: an analysis of more than 1300 patients. Transplant Proc. 39(8):2489–2493PubMedCrossRefGoogle Scholar
  5. 5.
    Su X, Zenios SA, Chakkera H, Milford EL, Chertow GM (2004) Diminishing significance of HLA matching in kidney transplantation. Am J Transplant 4(9):1501–1508PubMedCrossRefGoogle Scholar
  6. 6.
    Opelz G, Collaborative Transplant Study (2005) Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet 365(9470):1570PubMedCrossRefGoogle Scholar
  7. 7.
    Matas AJ, Leduc R, Rush D, Cecka JM, Connett J, Fieberg A, Halloran P, Hunsicker L, Cosio F, Grande J, Mannon R, Gourishankar S, Gaston R, Kasiske B (2010) Histopathologic clusters differentiate subgroups within the nonspecific diagnoses of CAN or CR: preliminary data from the DeKAF study. Am J Transplant 10(2):315–323PubMedCrossRefGoogle Scholar
  8. 8.
    Gondos A, Dohler B, Brenner H, Opelz G (2013) Kidney graft survival in Europe and the United States: strikingly different long-term outcomes. Transplantation 95(2):267–274PubMedCrossRefGoogle Scholar
  9. 9.
    Organ Procurement and Transplantation Network (OPTN). National Data, Kidney Graft/Patient Survival. OPTN Web site. http://optn.transplant.hrsa.gov/latestData/viewDataReports.asp. Accessed 6 June 2013
  10. 10.
    Hariharan S, Johnson CP, Bresnahan BA et al (2000) Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 342:605PubMedCrossRefGoogle Scholar
  11. 11.
    Halloran PF, Melk A, Barth C (1999) Rethinking chronic allograft nephropathy: the concept of accelerated senescence. J Am Soc Nephrol 10(1):167PubMedGoogle Scholar
  12. 12.
    Chapman JR, O’Connell PJ, Nankivell BJ (2005) Chronic renal allograft dysfunction. J Am Soc Nephrol 16(10):3015PubMedCrossRefGoogle Scholar
  13. 13.
    Paul LC (1999) Chronic allograft nephropathy: an update. Kidney Int 56(3):783PubMedCrossRefGoogle Scholar
  14. 14.
    Gloor JM, Sethi S, Stegall MD, Park WD, Moore SB, DeGoey S, Griffin MD, Larson TS, Cosio FG (2007) Transplant glomerulopathy: subclinical incidence and association with alloantibody. Am J Transplant 7(9):2124–2132PubMedCrossRefGoogle Scholar
  15. 15.
    Mannon RB, Matas AJ, Grande J, Leduc R, Connett J, Kasiske B, Cecka JM, Gaston RS, Cosio F, Gourishankar S, Halloran PF, Hunsicker L, Rush D, DeKAF Investigators (2010) Inflammation in areas of tubular atrophy in kidney allograft biopsies: a potent predictor of allograft failure. Am J Transplant 10(9):2066–2073PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Israni A, Leduc R, Holmes J, Jacobson PA, Lamba V, Guan W, Schladt D, Chen J, Matas AJ, Oetting WS, DeKAF Investigators (2010) Single-nucleotide polymorphisms, acute rejection, and severity of tubulitis in kidney transplantation, accounting for center-to-center variation. Transplantation 90(12):1401–1408PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Jacobson PA, Schladt D, Israni A, Oetting WS, Lin YC, Leduc R, Guan W, Lamba V, Matas AJ, DeKAF Investigators (2012) Genetic and clinical determinants of early, acute calcineurin inhibitor-related nephrotoxicity: results from a kidney transplant consortium. Transplantation 93(6):624–631PubMedCentralPubMedGoogle Scholar
  18. 18.
    El-Zoghby ZM, Stegall MD, Lager DJ, Kremers WK, Amer H, Gloor JM, Cosio FG (2009) Identifying specific causes of kidney allograft loss. Am J Transplant 9(3):527–535PubMedCrossRefGoogle Scholar
  19. 19.
    Medcalf JF, Andrews PA, Bankart J, Bradley C, Carr S, Feehally J, Harden P, Marsh J, Newstead C, Thompson J (2011) Poorer graft survival in ethnic minorities: results from a multi-centre UK study of kidney transplant outcomes. Clin Nephrol 75(4):294–301PubMedCrossRefGoogle Scholar
  20. 20.
    Omoloja A, Mitsnefes M, Talley L, Benfield M, Neu A (2007) Racial differences in graft survival: a report from the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Clin J Am Soc Nephrol 2(3):524–528PubMedCrossRefGoogle Scholar
  21. 21.
    Doxiadis II, de Fijter JW, Mallat MJ, Haasnoot GW, Ringers J, Persijn GG (2007) Claas. Simpler and equitable allocation of kidneys from postmortem donors primarily based on full HLA-DR compatibility. Transplantation 83(9):1207PubMedCrossRefGoogle Scholar
  22. 22.
    Opelz G (1985) Correlation of HLA matching with kidney graft survival in patients with or without cyclosporine treatment. Transplantation 40(3):240PubMedCrossRefGoogle Scholar
  23. 23.
    Owen WF, Pereira BJG, Sayegh MH (eds) (2000) Dialysis and transplantation. WB Saunders, Philadelphia, p 504Google Scholar
  24. 24.
    Uboldi de Capei M, Dametto E et al (2004) Cytokines and chronic rejection: a study in kidney transplant long-term survivors. Transplantation 77(4):548–552PubMedCrossRefGoogle Scholar
  25. 25.
    Brown KM, Kondeatis E et al (2006) Influence of donor C3 allotype on late renal-transplantation outcome. N Engl J Med 354(19):2014–2023PubMedCrossRefGoogle Scholar
  26. 26.
    Goldfarb-Rumyantzev AS, Naiman N (2010) Genetic predictors of renal transplant rejection. Nephrol Dial Transplant 25(4):1039–1047PubMedCrossRefGoogle Scholar
  27. 27.
    Hesselink DA, van Schaik RH, Heiden IP et al (2003) Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and the pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 74:245–254PubMedCrossRefGoogle Scholar
  28. 28.
    Li Y, Hu X, Cai B, Chen J, Bai Y, Tang J, Liao Y, Wang L (2012) Meta-analysis of the effect of MDR1 C3435 polymorphism on tacrolimus pharmacokinetics in renal transplant recipients. Transpl Immunol 27(1):12–18PubMedCrossRefGoogle Scholar
  29. 29.
    Elens L, Bouamar R, Hesselink DA, Haufroid V, van Gelder T, van Schaik RH (2012) The new CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet Genomics 22(5):373–380PubMedGoogle Scholar
  30. 30.
    Glowacki F, Lionet A, Buob D, Labalette M, Allorge D, Provôt F, Hazzan M, Noël C, Broly F, Cauffiez C (2011) CYP3A5 and ABCB1 polymorphisms in donor and recipient: impact on Tacrolimus dose requirements and clinical outcome after renal transplantation. Nephrol Dial Transplant 26(9):3046–3050PubMedCrossRefGoogle Scholar
  31. 31.
    Terrazzino S, Quaglia M, Stratta P, Canonico PL, Genazzani AA (2012) The effect of CYP3A5 6986A>G and ABCB1 3435C>T on tacrolimus dose-adjusted trough levels and acute rejection rates in renal transplant patients: a systematic review and meta-analysis. Pharmacogenet Genomics 22(8):642–645PubMedCrossRefGoogle Scholar
  32. 32.
    Oetting WS, Schladt DP, Leduc RE, Jacobson PA, Guan W, Matas AJ, Israni A, DeKAF Investigators (2011) Validation of single nucleotide polymorphisms associated with acute rejection in kidney transplant recipients using a large multi-center cohort. Transpl Int 24(12):1231–1238PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Phelan PJ, Shields W, O’Kelly P, Holian J, Walshe JJ, Magee C, Little D, Hickey D, Conlon PJ (2009) Left versus right deceased donor renal allograft outcome. Transpl Int 22(12):1159–1163PubMedCrossRefGoogle Scholar
  34. 34.
    Traynor C, O’Kelly P, Denton M, Magee C, Conlon PJ (2012) Concordance of outcomes of pairs of kidneys transplanted into different recipients. Transpl Int 25(9):918–924PubMedCrossRefGoogle Scholar
  35. 35.
    Louvar DW, Li N, Snyder J, Peng Y, Kasiske BL, Israni AK (2009) “Nature versus nurture” study of deceased-donor pairs in kidney transplantation. J Am Soc Nephrol 20(6):1351–1358PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Varagunam M, Yaqoob MM, Döhler B, Opelz G (2009) C3 polymorphisms and allograft outcome in renal transplantation. N Engl J Med 360(9):874–880PubMedCrossRefGoogle Scholar
  37. 37.
    Reeves-Daniel AM, DePalma JA, Bleyer AJ, Rocco MV, Murea M, Adams PL, Langefeld CD, Bowden DW, Hicks PJ, Stratta RJ, Lin JJ, Kiger DF, Gautreaux MD, Divers J, Freedman BI (2011) The APOL1 gene and allograft survival after kidney transplantation. Am J Transplant 11(5):1025–1030PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Lee BT, Kumar V, Williams TA, Abdi R, Bernhardy A, Dyer C, Conte S, Genovese G, Ross MD, Friedman DJ, Gaston R, Milford E, Pollak MR, Chandraker A (2012) The APOL1 genotype of African American kidney transplant recipients does not impact 5-year allograft survival. Am J Transplant 12(7):1924–1928PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Woillard JB, Rerolle JP, Picard N, Rousseau A, Guillaudeau A, Munteanu E, Essig M, Drouet M, Le Meur Y, Marquet P (2010) Donor P-gp polymorphisms strongly influence renal function and graft loss in a cohort of renal transplant recipients on cyclosporine therapy in a long-term follow-up. Clin Pharmacol Ther 88(1):95–100PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Moore J, McKnight AJ, Döhler B, Simmonds MJ, Courtney AE, Brand OJ, Briggs D, Ball S, Cockwell P, Patterson CC, Maxwell AP, Gough SC, Opelz G, Borrows R (2012) Donor ABCB1 variant associates with increased risk for kidney allograft failure. J Am Soc Nephrol 23(11):1891–1899PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Moore J, McKnight AJ, Simmonds MJ, Courtney AE, Hanvesakul R, Brand OJ, Briggs D, Ball S, Cockwell P, Patterson CC, Maxwell AP, Gough SC, Borrows R (2010) Association of caveolin-1 gene polymorphism with kidney transplant fibrosis and allograft failure. JAMA 303(13):1282–1287PubMedCrossRefGoogle Scholar
  42. 42.
    McCaughan JA, Duffy S, O’Hagan T, Courtney AE, Borrows R, Conlon PJ, Maxwell AP, McKnight AJ (2013) Comprehensive investigation of the caveolin 2 gene: resequencing and association for kidney transplant outcomes. PLoS One 8(5):e63358PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    The International HapMap 3 Consortium (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467(7311):52–58PubMedCentralCrossRefGoogle Scholar
  44. 44.
    O’Brien RP, Phelan PJ, Conroy J, O’Kelly P, Green A, Keogan M, O’Neill D, Jennings S, Traynor C, Casey J, McCormack M, Conroy R, Chubb A, Ennis S, Shields DC, Cavalleri GL, Conlon PJ (2013) A genome-wide association study of recipient genotype and medium-term kidney allograft function. Clin Transplant 27(3):379–387PubMedCrossRefGoogle Scholar
  45. 45.
    Manolio T (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363(2):166–176PubMedCrossRefGoogle Scholar
  46. 46.
    Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Amundadottir LT, Sulem P, Gudmundsson J et al (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38:652–658PubMedCrossRefGoogle Scholar
  48. 48.
    Libioulle C, Louis E, Hansoul S et al (2007) Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet 3:e58PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    McCarroll SA (2008) Extending genome-wide association studies to copy-number variation. Hum Mol Genet 17(R2):R135–R142PubMedCrossRefGoogle Scholar
  50. 50.
    Callinan PA, Feinberg AP (2006) The emerging science of epigenomics. Hum Mol Genet 15:R95PubMedCrossRefGoogle Scholar
  51. 51.
    Laing ME, Cummins R, O’Grady A, O’Kelly P, Kay EW, Murphy GM (2010) Aberrant DNA methylation associated with MTHFR C677T genetic polymorphism in cutaneous squamous cell carcinoma in renal transplant patients. Br J Dermatol 163(2):345–352PubMedCrossRefGoogle Scholar
  52. 52.
    Aluvihare VR, Betz AG (2006) The role of regulatory T cells in alloantigen tolerance. Immunol Rev 212:330–343PubMedCrossRefGoogle Scholar
  53. 53.
    Tsaur I, Gasser M, Aviles B, Lutz J, Lutz L, Grimm M, Lange V, Lopau K, Heemann U, Germer CT, Chandraker A, Waaga-Gasser AM (2011) Donor antigen-specific regulatory T-cell function affects outcome in kidney transplant recipients. Kidney Int 79(9):1005–1012PubMedCrossRefGoogle Scholar
  54. 54.
    Zuber J, Grimbert P, Blancho G, Thaunat O, Durrbach A, Baron C, Lebranchu Y (2013) Prognostic significance of graft Foxp3 expression in renal transplant recipients: a critical review and attempt to reconcile discrepancies. Nephrol Dial Transplant 28(5):1100–1111Google Scholar
  55. 55.
    Lal G, Bromberg JS (2009) Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114:3727PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Li XC, Turka LA (2010) An update on regulatory T cells in transplant tolerance and rejection. Nat Rev Nephrol 6(10):577–583PubMedCrossRefGoogle Scholar
  57. 57.
    McCaughan JA, McKnight AJ, Courtney AE, Maxwell AP (2012) Epigenetics: time to translate into transplantation. Transplantation 94(1):1–7PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang G, Wang H, Wang F, Yu L, Yang X, Meng J, Qin W, Wu G, Li J, Yang A, Zhou Y, Zhang R (2007) Gene polymorphisms of the renin-angiotensin-aldosterone system and angiotensin II type 1-receptor activating antibodies in renal rejection. Tohoku J Exp Med 213(3):203–214PubMedCrossRefGoogle Scholar
  59. 59.
    Israni AK, Li N, Sidhwani S, Rosas S, Kong X, Joffe M, Rebbeck T, Feldman HI (2007) Association of hypertension genotypes and decline in renal function after kidney transplantation. Transplantation 84(10):1240–1247PubMedCrossRefGoogle Scholar
  60. 60.
    Chandrakantan A, McDermott DH, Tran HT, Jurewicz M, Gallon L, Gaston R, Milford E, Abdi R (2007) Role of beta3 integrin in acute renal allograft rejection in humans. Clin J Am Soc Nephrol 2:1268–1273PubMedCrossRefGoogle Scholar
  61. 61.
    Jeong JC, Hwang YH, Kim H, Ro H, Park HC, Kim YJ, Kim MG, Ha J, Park MH, Chae DW, Ahn C, Yang J (2011) Association of complement 5 genetic polymorphism with renal allograft outcomes in Korea. Nephrol Dial Transplant 26(10):3378–3385PubMedCrossRefGoogle Scholar
  62. 62.
    Kang SW, Park SJ, Kim YW, Kim YH, Sohn HS, Yoon YC, Joo H, Jeong KH, Lee SH, Lee TW, Ihm CG (2008) Association of MCP-1 and CCR2 polymorphisms with the risk of late acute rejection after renal transplantation in Korean patients. Int J Immunogenet 35(1):25–31PubMedCentralPubMedGoogle Scholar
  63. 63.
    Krüger B, Böger CA, Obed A, Farkas S, Hoffmann U, Banas B, Fischereder M, Krämer BK (2007) RANTES/CCL5 polymorphisms as a risk factor for recurrent acute rejection. Clin Transplant 21(3):385–390PubMedCrossRefGoogle Scholar
  64. 64.
    Abdi R, Tran TB, Sahagun-Ruiz A, Murphy PM, Brenner BM, Milford EL, McDermott DH (2002) Chemokine receptor polymorphism and risk of acute rejection in human renal transplantation. J Am Soc Nephrol 13(3):754–758PubMedGoogle Scholar
  65. 65.
    Slavcheva E, Albanis E, Jiao Q et al (2001) Cytotoxic T-lymphocyte antigen 4 gene polymorphisms and susceptibility to acute allograft rejection. Transplantation 72:935–940PubMedCrossRefGoogle Scholar
  66. 66.
    Hocher B, Slowinski T, Hauser I, Vetter B, Fritsche L, Bachert D, Kulozik A, Neumayer HH (2002) Association of factor V Leiden mutation with delayed graft function, acute rejection episodes and long-term graft dysfunction in kidney transplant recipients. Thromb Haemost 87(2):194–198PubMedGoogle Scholar
  67. 67.
    Yuan FF, Watson N, Sullivan JS et al (2004) Association of Fc gamma receptor IIA polymorphisms with acute renal-allograft rejection. Transplantation 78:766–769PubMedCrossRefGoogle Scholar
  68. 68.
    Salido E, Martin B, Barrios Y et al (1999) The PlA2 polymorphism of the platelet glycoprotein IIIA gene as a risk factor for acute renal allograft rejection. J Am Soc Nephrol 10:2599–2605PubMedGoogle Scholar
  69. 69.
    Manchanda PK, Bid HK, Kumar A, Mittal RD (2006) Genetic association of interleukin-1beta and receptor antagonist (IL-1Ra) gene polymorphism with allograft function in renal transplant patients. Transpl Immunol 15(4):289–296PubMedCrossRefGoogle Scholar
  70. 70.
    Morgun A, Shulzhenko N, Rampim GF, Medina JO, Machado PG, Diniz RV, Almeida DR, Gerbase-DeLima M (2003) Interleukin-2 gene polymorphism is associated with renal but not cardiac transplant outcome. Transplant Proc 35(4):1344–1345PubMedCrossRefGoogle Scholar
  71. 71.
    Lee DY, Song SB, Moon JY, Jeong KH, Park SJ, Kim HJ, Kang SW, Lee SH, Kim YH, Chung JH, Ihm CG, Lee TW (2010) Association between interleukin-3 gene polymorphism and acute rejection after kidney transplantation. Transplant Proc 42(10):4501–4504PubMedCrossRefGoogle Scholar
  72. 72.
    Pawlik A, Domanski L, Rozanski J, Czerny B, Juzyszyn Z, Dutkiewicz G, Myslak M, Hałasa M, Słojewski M, Dabrowska-Zamojcin E (2008) The association between cytokine gene polymorphisms and kidney allograft survival. Ann Transplant 13(2):54–58PubMedGoogle Scholar
  73. 73.
    Singh R, Kesarwani P, Ahirwar DK, Kapoor R, Mittal RD (2009) Interleukin 8–251T>A and Interferon gamma +874A>T polymorphism: potential predictors of allograft outcome in renal transplant recipients from North India. Transpl Immunol 21(1):13–17PubMedCrossRefGoogle Scholar
  74. 74.
    Asderakis A, Sankaran D, Dyer P, Johnson RW, Pravica V, Sinnott PJ, Roberts I, Hutchinson IV (2001) Association of polymorphisms in the human interferon-gamma and interleukin-10 gene with acute and chronic kidney transplant outcome: the cytokine effect on transplantation. Transplantation 71(5):674–677PubMedCrossRefGoogle Scholar
  75. 75.
    Kolesar L, Novota P, Krasna E, Slavcev A, Viklicky O, Honsova E, Striz I (2007) Polymorphism of interleukin-18 promoter influences the onset of kidney graft function after transplantation. Tissue Antigens 70(5):363–368PubMedCrossRefGoogle Scholar
  76. 76.
    Tajik N, Salari F, Ghods AJ, Hajilooi M, Radjabzadeh MF, Mousavi T (2008) Association between recipient ICAM-1 K469 allele and renal allograft acute rejection. Int J Immunogenet 35(1):9–13PubMedGoogle Scholar
  77. 77.
    Haimila K, Turpeinen H, Alakulppi NS, Kyllönen LE, Salmela KT, Partanen J (2009) Association of genetic variation in inducible costimulator gene with outcome of kidney transplantation. Transplantation 15:87Google Scholar
  78. 78.
    Wang J, Yang JW, Zeevi A (2008) IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther 83(5):711–717PubMedCrossRefGoogle Scholar
  79. 79.
    Grinyó J, Vanrenterghem Y, Nashan B, Vincenti F, Ekberg H, Lindpaintner K, Rashford M, Nasmyth-Miller C, Voulgari A, Spleiss O, Truman M, Essioux L (2008) Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl Int 21(9):879–891PubMedCrossRefGoogle Scholar
  80. 80.
    Yang H, Zhou Q, Chen ZM, Chen WQ, Wang MM, Chen JH (2011) Polymorphisms in STAT4 increase the risk of acute renal allograft rejection in the Chinese population. Transpl Immunol 24(4):216–219PubMedCrossRefGoogle Scholar
  81. 81.
    Park JY, Park MH, Park H, Ha J, Kim SJ (2004) Ahn C.TNF-alpha and TGF-beta1 gene polymorphisms and renal allograft rejection in Koreans. Tissue Antigens 64(6):660–666PubMedCrossRefGoogle Scholar
  82. 82.
    Ducloux D, Deschamps M, Yannaraki M et al (2005) Relevance of Toll-like receptor-4 polymorphisms in renal transplantation. Kidney Int 67:2454–2461PubMedCrossRefGoogle Scholar
  83. 83.
    Lavin PJ, Laing ME, O’Kelly P, Moloney FJ, Gopinathan D, Aradi AA, Shields DC, Murphy GM, Conlon PJ (2007) Improved renal allograft survival with vitamin D receptor polymorphism. Ren Fail 29(7):785–789PubMedCrossRefGoogle Scholar
  84. 84.
    Günesacar R, Opelz G, Erken E, Pelzl S, Döhler B, Ruhenstroth A, Süsal C (2007) VEGF 936 C/T gene polymorphism in renal transplant recipients: association of the T allele with good graft outcome. Hum Immunol 68(7):599–602PubMedCrossRefGoogle Scholar
  85. 85.
    Krajewska M, Koscielska-Kasprzak K, Weyde W et al (2009) Impact of donor-dependent genetic factors on long-term renal graft function. Transplant Proc 41:2978–2980PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Nephrology 2014

Authors and Affiliations

  • Paul J. Phelan
    • 1
  • Peter J. Conlon
    • 2
  • Matthew A. Sparks
    • 3
  1. 1.Duke University Medical CenterDurhamUSA
  2. 2.Department of NephrologyBeaumont HospitalDublinIreland
  3. 3.Department of Medicine, Division of NephrologyDuke University and Durham VA Medical CentersDurhamUSA

Personalised recommendations