Journal of Nephrology

, Volume 27, Issue 4, pp 403–410 | Cite as

Accuracy of the estimation of glomerular filtration rate within a population of critically ill patients

  • João Pedro Baptista
  • Marta Neves
  • Luis Rodrigues
  • Luísa Teixeira
  • João Pinho
  • Jorge Pimentel
Original Article



Accuracy of glomerular filtration rate (GFR) estimates has been questioned and several authors recommend routine use of measured renal creatinine clearance (CLCR) as a surrogate of GFR in the intensive care unit (ICU). Our purpose was to compare estimates of GFR using Cockroft–Gault (CG), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease Study (MDRD) equations with 8h-CLCR, within a population of critically ill patients with a wide range of measured CLCR.


Through a prospective, observational study of 54 patients with normal serum creatinine (sCr) admitted to ICU, daily 8h-CLCR (reference method) and GFR estimates (644 paired samples) were matched and compared. Augmented renal clearance (ARC) was defined as 8h-CLCR >130 ml/min/1.73 m2.


No significant difference was found between mean 8h-CLCR (135.5 ml/min/1.73 m2) and CG equation (135.7 ml/min/1.73 m2), but significant differences (p < 0.01) were found for the MDRD (124.4 ml/min/1.73 m2) and CKD-EPI (107.6 ml/min/1.73 m2) equations. Correlation between 8h-CLCR and all estimates was weak (R = 0.2, 0.19 and 0.34, respectively). We observed poor agreement in terms of precision (40.9, 39.8 and 33.4 %, respectively). Analysing subgroups, we observed that all equations significantly underestimated 8h-CLCR >120 ml/min/1.73 m2 and overestimated 8h-CLCR <120 ml/min/1.73 m2 (p < 0.05). The incidence of ARC patients was 55.6 %.


Estimates of GFR using CG, CKD-EPI and MDRD formulae are flawed in the critically ill with normal sCr, significantly underestimating renal function in those with ARC and overestimating it in those with normal or decreased 8h-CLCR. Globally, the population exhibited ARC on more than half of the ICU admission days.


Acute kidney injury Critically ill Augmented renal clearance Prediction equations 


Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

40620_2013_36_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)


  1. 1.
    Wesson L (1969) Physiology of the human kidney. Grune & Stratton, New YorkGoogle Scholar
  2. 2.
    Sunder-Plassmann G, Horl WH (2004) A critical appraisal for definition of hyperfiltration. Am J Kidney Dis 43:396PubMedCrossRefGoogle Scholar
  3. 3.
    Gonçalves-Pereira J, Póvoa P (2011) Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams. Crit Care 15:R206PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Lipman J, Wallis SC, Boots RJ (2003) Cefepime versus cefpirome: the importance of creatinine clearance. Anesth Analg 97:1149–1154PubMedCrossRefGoogle Scholar
  5. 5.
    Baptista JP, Sousa E, Martins P, Pimentel J (2012) Augmented renal clearance in septic patients and implications for vancomycin optimization. Int J Antimicrob Agents 39:420–423PubMedCrossRefGoogle Scholar
  6. 6.
    Conil JM, Georges B, Lavit M, Seguin T et al (2007) Pharmacokinetics of ceftazidime and cefepime in burn patients: the importance of age and creatinine clearance. Int J Clin Pharmacol Ther 45:529–538PubMedCrossRefGoogle Scholar
  7. 7.
    De Paepe P, Belpaire FM, Buylaert WA (2002) Pharmacokinetic and pharmacodynamic considerations when treating patients with sepsis and septic shock. Clin Pharmacokinet 41:1135–1151PubMedCrossRefGoogle Scholar
  8. 8.
    Baptista JP, Udy AA, Sousa E, Pimentel J, Wang L, Roberts JA, Lipman J (2011) A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care 15:R139PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Grootaert V, Willems L, Debaveye Y, Meyfroidt G, Spriet I (2012) Augmented renal clearance in the critically ill: how to assess kidney function. Ann Pharmacother 46:952–959CrossRefGoogle Scholar
  10. 10.
    Poggio ED, Nef PC, Wang X, Greene T, Van Lente F, Dennis VW, Hall PM (2005) Performance of the Cockcroft–Gault and modification of diet in renal disease equations in estimating GFR in ill hospitalized patients. Am J Kidney Dis 46:242–252PubMedCrossRefGoogle Scholar
  11. 11.
    Lipman J, Udy AA, Roberts JA (2011) Do we understand the impact of altered physiology, consequent interventions and resultant clinical scenarios in the intensive care unit? The antibiotic story. Anaesth Intensive Care 39:999–1000PubMedGoogle Scholar
  12. 12.
    Conil JM, Georges B, Fourcade O et al (2007) Assessment of renal function in clinical practice at the bedside of burn patients. Br J Clin Pharmacol 63:583–594PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMedCrossRefGoogle Scholar
  14. 14.
    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med 130:461–470CrossRefGoogle Scholar
  15. 15.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    KDOQI (2007) Clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 49:S12–S154CrossRefGoogle Scholar
  17. 17.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG et al (2007) Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Herrera-Gutiérrez ME, Seller-Pérez G, Maynar-Moliner J, Sánchez-Izquierdo Riera JÁ (2012) Variability in renal dysfunction defining criteria and detection methods in intensive care units: are the international consensus criteria used for diagnosing renal dysfunction? Med Intensiva 36:264–269PubMedCrossRefGoogle Scholar
  19. 19.
    Hoste EA, Damen J, Vanholder RC, Lameire NH, Delanghe JR, Van den Hauwe K et al (2005) Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transpl 20:747–753CrossRefGoogle Scholar
  20. 20.
    Spinler SA, Nawarskas JJ, Boyce EG, Connors JE, Charland SL, Goldfarb S (1998) Predictive performance of ten equations for estimating creatinine clearance in cardiac patients. Iohexol cooperative study group. Ann Pharmacother 32:1275–1283PubMedCrossRefGoogle Scholar
  21. 21.
    Snider RD, Kruse JA, Bander JJ, Dunn GH (1995) Accuracy of estimated creatinine clearance in obese patients with stable renal function in the intensive care unit. Pharmacotherapy 15:747–753PubMedGoogle Scholar
  22. 22.
    Seller-Pérez G, Herrera-Gutiérrez ME, Banderas-Bravo E, Olalla-Sánchez R, Lozano-Sáez R, Quesada-García G (2010) Concordance in critical patients between the equations designed for the calculation of glomerular filtration rate and 24-hour creatinine clearance. Med Intensiva 34:294–302PubMedCrossRefGoogle Scholar
  23. 23.
    Robert S, Zarowitz BJ, Peterson EL, Dumler F (1993) Predictability of creatinine clearance estimates in critically ill patients. Crit Care Med 21:1487–1495PubMedCrossRefGoogle Scholar
  24. 24.
    Bouchard J, Macedo E, Soroko S, Chertow GM, Himmelfarb J, Ikizler TA et al (2010) Comparison of methods for estimating glomerular filtration rate in critically ill patients with acute kidney injury. Nephrol Dial Transpl 25:102–107CrossRefGoogle Scholar
  25. 25.
    Bragadottir G, Redfors B, Ricksten SV (2013) Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury—true GFR versus urinary creatinine clearance and estimating equations. Crit Care 17:R108. doi: 10.1186/cc12777 PubMedCrossRefGoogle Scholar
  26. 26.
    Fuster-Lluch O, Gerónimo-Pardo M, Peyró-García R (2008) Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care 36:674–680PubMedGoogle Scholar
  27. 27.
    Udy A, Boots R, Senthuran S, Stuart J, Deans R, Lassig-Smith M et al (2010) Augmented creatinine clearance in traumatic brain injury. Anesth Analg 111:1505–1510PubMedCrossRefGoogle Scholar
  28. 28.
    Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J (2010) Augmented renal clearance: implications for antimicrobial dosing in the critically ill. Clin Pharmacokinet 49:1–16PubMedCrossRefGoogle Scholar
  29. 29.
    Hayashi Y, Lipman J, Udy AA, Ng M, McWhinney B, Ungerer J et al (2013) β-Lactam therapeutic drug monitoring in the critically ill: optimising drug exposure in patients with fluctuating renal function and hypoalbuminaemia. Int J Antimicrob Agents 41:162–166PubMedCrossRefGoogle Scholar
  30. 30.
    Udy AA, Varghese JM, Altukroni M et al (2012) Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142:30–39PubMedCrossRefGoogle Scholar
  31. 31.
    Cherry RA, Eachempati SR, Hydo L, Barie PS (2002) Accuracy of short-duration creatinine clearance determinations in predicting 24-hour creatinine clearance in critically ill and injured patients. J Trauma 53:267–271PubMedCrossRefGoogle Scholar
  32. 32.
    Davis GA, Chandler MH (1996) Comparison of creatinine clearance estimation methods in patients with trauma. Am J Health Syst Pharm 53:1028–1032PubMedGoogle Scholar

Copyright information

© Italian Society of Nephrology 2014

Authors and Affiliations

  • João Pedro Baptista
    • 1
  • Marta Neves
    • 1
  • Luis Rodrigues
    • 1
  • Luísa Teixeira
    • 1
  • João Pinho
    • 1
  • Jorge Pimentel
    • 1
  1. 1.Centro Hospitalar Universitário CoimbraCoimbraPortugal

Personalised recommendations