Journal of Nephrology

, Volume 27, Issue 1, pp 65–71 | Cite as

Urine output on ICU entry is associated with hospital mortality in unselected critically ill patients

  • Zhongheng Zhang
  • Xiao Xu
  • Hongying Ni
  • Hongsheng Deng
Original Article


Background and objective

Urine output (UO) is routinely measured in the intensive care unit (ICU) but its prognostic value remains debated. The study aimed to investigate the association between day 1 UO and hospital mortality.


Clinical data were abstracted from the Multiparameter Intelligent Monitoring in Intensive Care II (version 2.6) database. UO was recorded for the first 24 h after ICU entry, and was classified into three categories: UO >0.5, 0.3–0.5 and ≤0.3 ml/kg per hour. The primary endpoint was the hospital mortality. Four models were built to adjust for the hazards ratio of mortality.


A total of 21,207 unselected ICU patients including 2,401 non-survivors and 18,806 survivors were included (mortality rate 11.3 %). Mortality rate increased progressively across UO categories: >0.5 (7.67 %), 0.3–0.5 (11.27 %) and ≤0.3 ml/kg/h (18.29 %), and this relationship remained statistically significant after rigorous control of confounding factors with the Cox proportional hazards regression model. With UO >0.5 as the referent group, the hazards ratios for UO 0.3–0.5 and UO ≤0.3 were 1.41 (95 % CI 1.29–1.54) and 1.52 (95 % CI 1.38–1.67), respectively.


UO obtained on ICU entry is an independent predictor of mortality irrespective of diuretic use. It would be interesting to examine whether strategies to increase UO would improve clinical outcome.


Urine output Intensive care unit Hospital mortality Acute kidney injury 


  1. 1.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A, Acute Kidney Injury Network (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31PubMedCrossRefGoogle Scholar
  2. 2.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup (2004) Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8(4):R204–R212PubMedCrossRefGoogle Scholar
  3. 3.
    Kidney Disease: Improving Global Outcomes (KDIGO)—Acute Kidney Injury Work Group (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl 2:1–138CrossRefGoogle Scholar
  4. 4.
    Cruz DN, Bolgan I, Perazella MA, Bonello M, de Cal M, Corradi V, Polanco N, Ocampo C, Nalesso F, Piccinni P, Ronco C, North East Italian Prospective Hospital Renal Outcome Survey on Acute Kidney Injury (NEiPHROS-AKI) Investigators (2007) North East Italian Prospective Hospital Renal Outcome Survey on Acute Kidney Injury (NEiPHROS-AKI): targeting the problem with the RIFLE Criteria. Clin J Am Soc Nephrol 2(3):418–425PubMedCrossRefGoogle Scholar
  5. 5.
    Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16(11):3365–3370PubMedCrossRefGoogle Scholar
  6. 6.
    Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, Hiesmayr M (2004) Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol 15(6):1597–1605PubMedCrossRefGoogle Scholar
  7. 7.
    Praught ML, Shlipak MG (2005) Are small changes in serum creatinine an important risk factor? Curr Opin Nephrol Hypertens 14(3):265–270PubMedCrossRefGoogle Scholar
  8. 8.
    Valette X, du Cheyron D (2013) A critical appraisal of the accuracy of the RIFLE and AKIN classifications in defining “acute kidney insufficiency” in critically ill patients. J Crit Care 28(2):116–125PubMedCrossRefGoogle Scholar
  9. 9.
    Macedo E, Malhotra R, Bouchard J, Wynn SK, Mehta RL (2011) Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int 80(7):760–767PubMedCrossRefGoogle Scholar
  10. 10.
    Han SS, Kang KJ, Kwon SJ, Wang SJ, Shin SH, Oh SW, Na KY, Chae DW, Kim S, Chin HJ (2012) Additional role of urine output criterion in defining acute kidney injury. Nephrol Dial Transplant 27(1):161–165PubMedCrossRefGoogle Scholar
  11. 11.
    Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman LW, Moody G, Heldt T, Kyaw TH, Moody B, Mark RG (2011) Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database. Crit Care Med 39(5):952–960PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Závada J, Hoste E, Cartin-Ceba R, Calzavacca P, Gajic O, Clermont G, Bellomo R, Kellum JA, AKI6 Investigators (2010) A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transplant 25(12):3911–3918PubMedCrossRefGoogle Scholar
  13. 13.
    Peduzzi PN, Hardy RJ, Holford TR (1980) A stepwise variable selection procedure for nonlinear regression models. Biometrics 36(3):511–516PubMedCrossRefGoogle Scholar
  14. 14.
    Wiegand RE (2010) Performance of using multiple stepwise algorithms for variable selection. Stat Med 29(15):1647–1659PubMedGoogle Scholar
  15. 15.
    Prowle JR, Liu YL, Licari E, Bagshaw SM, Egi M, Haase M, Haase-Fielitz A, Kellum JA, Cruz D, Ronco C, Tsutsui K, Uchino S, Bellomo R (2011) Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care 15(4):R172PubMedCrossRefGoogle Scholar
  16. 16.
    Legrand M, Payen D (2011) Understanding urine output in critically ill patients. Ann Intensive Care 1(1):13PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wilson WC, Aronson S (2001) Oliguria. A sign of renal success or impending renal failure? Anesthesiol Clin North America 19(4):841–883PubMedCrossRefGoogle Scholar
  18. 18.
    Macedo E, Malhotra R, Claure-Del Granado R, Fedullo P, Mehta RL (2011) Defining urine output criterion for acute kidney injury in critically ill patients. Nephrol Dial Transplant 26(2):509–515PubMedCrossRefGoogle Scholar
  19. 19.
    Mehta RL, Pascual MT, Soroko S, Chertow GM, PICARD Study Group (2002) Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA 288(20):2547–2553PubMedCrossRefGoogle Scholar
  20. 20.
    Teixeira C, Garzotto F, Piccinni P, Brienza N, Iannuzzi M, Gramaticopolo S, Forfori F, Pelaia P, Rocco M, Ronco C, Anello CB, Bove T, Carlini M, Michetti V, Cruz DN, for the NEFROlogia e Cura INTensiva (NEFROINT) investigators (2013) Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care 17(1):R14PubMedCrossRefGoogle Scholar
  21. 21.
    Uchino S, Doig GS, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Nacedo E, Gibney N, Tolwani A, Ronco C, Kellum JA, Beginning and Ending Supportive Therapy for the Kidney (B.E.S.T. Kidney) Investigators (2004) Diuretics and mortality in acute renal failure. Crit Care Med 32(8):1669–1677PubMedCrossRefGoogle Scholar
  22. 22.
    National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354(24):2564–2575PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang Z, Zhang Z, Xue Y, Xu X, Ni H (2012) Prognostic value of B-type natriuretic peptide (BNP) and its potential role in guiding fluid therapy in critically ill septic patients. Scand J Trauma Resusc Emerg Med 31(20):86CrossRefGoogle Scholar
  24. 24.
    Arikan AA, Zappitelli M, Goldstein SL, Naipaul A, Jefferson LS, Loftis LL (2012) Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med 13(3):253–258PubMedCrossRefGoogle Scholar
  25. 25.
    Sakr Y, Vincent JL, Reinhart K, Groeneveld J, Michalopoulos A, Sprung CL, Artigas A, Ranieri VM, Sepsis Occurence in Acutely Ill Patients Investigators (2005) High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 128(5):3098–3108PubMedCrossRefGoogle Scholar
  26. 26.
    Brandstrup B, Tønnesen H, Beier-Holgersen R, Hjortsø E, Ørding H, Lindorff-Larsen K, Rasmussen MS, Lanng C, Wallin L, Iversen LH, Gramkow CS, Okholm M, Blemmer T, Svendsen PE, Rottensten HH, Thage B, Riis J, Jeppesen IS, Teilum D, Christensen AM, Graungaard B, Pott F, Danish Study Group on Perioperative Fluid Therapy (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238(5):641–648PubMedCrossRefGoogle Scholar
  27. 27.
    Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103(1):25–32PubMedCrossRefGoogle Scholar
  28. 28.
    Palevsky PM, Liu KD, Brophy PD, Chawla LS, Parikh CR, Thakar CV, Tolwani AJ, Waikar SS, Weisbord SD (2013) KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis 61(5):649–672PubMedCrossRefGoogle Scholar
  29. 29.
    Ferreira FL, Bota DP, Bross A, Mélot C, Vincent JL (2001) Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 286(14):1754–1758PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Nephrology 2014

Authors and Affiliations

  • Zhongheng Zhang
    • 1
  • Xiao Xu
    • 1
  • Hongying Ni
    • 1
  • Hongsheng Deng
    • 1
  1. 1.Department of Critical Care Medicine, Jinhua Municipal Central HospitalJinhua Hospital of Zhejiang UniversityJinhuaPeople’s Republic of China

Personalised recommendations