Journal of Nephrology

, Volume 27, Issue 3, pp 289–297

Combined application of eGFR and albuminuria for the precise diagnosis of stage 2 and 3a CKD in the elderly

  • Conghui Liu
  • Haiping Chen
  • Cuiyun Liu
  • Chen Fu
  • Hui Zhang
  • Huayu Yang
  • Peng Wang
  • Fan Wang
  • Shujun Chen
  • Qing Ma
Original Article

Abstract

Background

Estimated glomerular filtration rate (eGFR) is the sole diagnostic criterion for stage 3a chronic kidney disease (CKD). Because eGFR decreases with age, its prognostic utility in the elderly is controversial. Albuminuria is an important prognostic factor. To confirm that eGFR use may lead to the overdiagnosis of CKD and to examine the utility of eGFR combined with albuminuria for diagnosing stage 3a CKD in the elderly.

Methods

This study included 365 elderly patients (age ≥ 65 years) who were diagnosed with stage 2 or 3a CKD. All patients had 3 years of consecutive data at our hospitals from 2000 to 2012. For each eGFR level, patients were divided into normalbuminuria (NOR, urinary albumin excretion rate [UAER] < 30 mg/24 h), microalbuminuria (30 ≥ UAER < 299 mg/24 h), and macroalbuminuria groups (UAER ≥ 300 mg/24 h).

Results

Albuminuria was associated with eGFR loss but not baseline eGFR level. When stage 2 NOR was used as a reference, the multivariable adjusted odds ratio (OR) for rapid kidney function decline (RKFD) of stage 3a NOR was 1.329 (95 % confidence interval (CI): 0.334–5.281, P = 0.686). ORs for other groups were significantly higher. In stage 3a NOR, higher ORs for RKFD were associated with younger age groups.

Conclusions

Lot of elderly patients with stage 3a CKD and normal albuminuria levels may be over-diagnosed. Albuminuria may be combined with eGFR for improved diagnosis and treatment of stage 3 CKD in the elderly.

Keywords

Elderly Stage 3a CKD eGFR Albuminuria 

References

  1. 1.
    Coresh J, Selvin E, Stevens LA et al (2007) Prevalence of chronic kidney disease in the United States. JAMA 298(17):2038–2047PubMedCrossRefGoogle Scholar
  2. 2.
    Douville P, Martel AR, Talbot J, Desmeules S, Langlois S, Agharazii M (2009) Impact of age on glomerular filtration estimates. Nephrol Dial Transpl 24(1):97–103CrossRefGoogle Scholar
  3. 3.
    Stevens LA, Li S, Wang C et al (2010) Prevalence of CKD and comorbid illness in elderly patients in the United States: results from the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis 55(3 Suppl 2):S23–S33PubMedCrossRefGoogle Scholar
  4. 4.
    Zúñiga SMC, Müller OH, Flores OM (2011) Prevalence of chronic kidney disease in subjects consulting in urban primary care clinics. Rev Med Chil 139(9):1176–1184CrossRefGoogle Scholar
  5. 5.
    Granerus G, Aurell M (1981) Reference values for 51Cr-EDTA clearance as a measure of glomerular filtration rate. Scand J Clin Lab Invest 41:611–616PubMedCrossRefGoogle Scholar
  6. 6.
    Grewal GS, Blake GM (2005) Reference data for 51Cr-EDTA measurements of the glomerular filtration rate derived from live kidney donors. Nucl Med Commun 26:61–65PubMedCrossRefGoogle Scholar
  7. 7.
    Xu R, Zhang LX, Zhang PH, Wang F, Zuo L, Wang HY (2010) Gender difference in age related decline in glomerular filtration rates in healthy people and chronic kidney disease patients. BMC Nephrol 23(11):20CrossRefGoogle Scholar
  8. 8.
    Lin MY, Hwang SJ, Mau LW et al (2010) Impact of late-stage CKD and aging on medical utilization in the elderly population: a closed-cohort study in Taiwan. Nephrol Dial Transpl 25:3230–3235CrossRefGoogle Scholar
  9. 9.
    Glassock RJ, Winearls C (2008) An epidemic of chronic kidney disease: fact or fiction? Nephrol Dial Transpl 23(4):1117–1121CrossRefGoogle Scholar
  10. 10.
    Stengel B, Metzger M, Froissart M et al (2011) Epidemiology and prognostic significance of chronic kidney disease in the elderly—the Three-City prospective cohort study. Nephrol Dial Transpl 26(10):3286–3295CrossRefGoogle Scholar
  11. 11.
    Bello AK, Hemmelgarn B, Lloyd A et al (2011) Associations among estimated glomerular filtration rate, proteinuria, and adverse cardiovascular outcomes. Clin J Am Nephrol 6(6):1418–1426CrossRefGoogle Scholar
  12. 12.
    Kurella Tamura M, Muntner P, Wadley V et al (2011) Albuminuria, kidney function, and the incidence of cognitive impairment among adults in the United States. Am J Kidney Dis 58(5):756–763PubMedCrossRefGoogle Scholar
  13. 13.
    Obi Y, Kimura T, Nagasawa Y et al (2010) Impact of age and overt proteinuria on outcomes of stage 3 to 5 chronic kidney disease in a referred cohort. Clin J Am Soc Nephrol 5(9):1558–1565PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Gansevoort RT, Matsushita K, van der Velde M et al (2011) Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 80(1):93–104PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Grams ME, Astor BC, Bash LD, Matsushita K, Wang Y, Coresh J (2010) Albuminuria and estimated glomerular filtration rate independently associate with acute kidney injury. J Am Soc Nephrol 21(10):1757–1764PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kim BJ, Lee HA, Kim NH et al (2011) The association of albuminuria, arterial stiffness, and blood pressure status in nondiabetic, nonhypertensive individuals. J Hypertens 29(11):2091–2098PubMedCrossRefGoogle Scholar
  17. 17.
    Usui T, Ninomiya T, Nagata M et al (2011) Albuminuria as a risk factor for peripheral arterial disease in a general population: the Hisayama study. J Atheroscler Thromb 18(8):705–712PubMedCrossRefGoogle Scholar
  18. 18.
    van der Velde M, Matsushita K, Coresh J et al (2011) Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 79(12):1341–1352PubMedCrossRefGoogle Scholar
  19. 19.
    Waheed S, Matsushita K, Sang Y et al (2012) Combined association of albuminuria and cystatin C-based estimated GFR with mortality, coronary heart disease, and heart failure outcomes: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis 60(2):207–216PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Hallan SI, Ritz E, Lydersen S, Romundstad S, Kvenild K, Orth SR (2009) Combining GFR and albuminuria to classify CKD improves prediction of ESRD. J Am Soc Nephrol 20(5):1069–1077PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Matsushita K, Selvin E, Bash LD, Franceschini N, Astor BC, Coresh J (2009) Change in estimated GFR associates with coronary heart disease and mortality. J Am Soc Nephrol 20:2617–2624PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Shlipak MG, Katz R, Kestenbaum B et al (2009) Rapid decline of kidney function increases cardiovascular risk in the elderly. J Am Soc Nephrol 20:2625–2630PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Al-Aly Z, Zeringue A, Fu J et al (2010) Rate of kidney function decline associates with mortality. J Am Soc Nephrol 21:1961–1969PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kilbride HS, Stevens PE, Eaglestone G et al (2013) Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis 61(1):57–66PubMedCrossRefGoogle Scholar
  25. 25.
    Korhonen PE, Kivelä SL, Aarnio PT, Kautiainen H, Järvenpää S, Kantola IM (2012) Estimating glomerular filtration rate in hypertensive subjects: comparison of the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) study equations. Ann Med 44(5):487–493PubMedCrossRefGoogle Scholar
  26. 26.
    Matsushita K, Mahmoodi BK, Woodward M et al (2012) Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 307(18):1941–1951PubMedCrossRefGoogle Scholar
  27. 27.
    Matsushita K, Tonelli M, Lloyd A et al (2012) Clinical risk implications of the CKD Epidemiology Collaboration (CKD-EPI) equation compared with the Modification of Diet in Renal Disease (MDRD) study equation for estimated GFR. Am J Kidney Dis 60(2):241–249PubMedCrossRefGoogle Scholar
  28. 28.
    Shafi T, Matsushita K, Selvin E et al (2012) Comparing the association of GFR estimated by the CKD-EPI and MDRD study equations and mortality: the third national health and nutrition examination survey (NHANES III) examination survey (NHANES III). BMC Nephrol 13(1):42PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Wu MJ, Shu KH, Liu PH et al (2010) High risk of renal failure in stage 3B chronic kidney disease is under-recognized in standard medical screening. J Chin Med Assoc 73(10):515–522PubMedCrossRefGoogle Scholar
  30. 30.
    Imai E, Yamagata K, Iseki K et al (2007) Kidney disease screening program in Japan: history, outcome, and perspectives. Clin J Am Soc Nephrol 2:1360–1366PubMedCrossRefGoogle Scholar
  31. 31.
    Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081Google Scholar
  32. 32.
    Gansevoort RT, de Jong PE (2009) The case for using albuminuria in staging chronic kidney disease. J Am Soc Nephrol 20(3):465–468PubMedCrossRefGoogle Scholar
  33. 33.
    van der Velde M, Halbesma N, de Charro FT et al (2009) Screening for albuminuria identifies individuals at increased renal risk. J Am Soc Nephrol 20(4):852–862PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Brantsma AH, Bakker SJL, Hillege HL, de Zeeuw D, de Jong PE, Gansevoort RT (2008) Cardiovascular and renal outcome in subjects with KDOQI stages 1–3 chronic kidney disease: the importance of urinary albumin excretion. Nephrol Dial Transpl 23:3851–3858CrossRefGoogle Scholar
  35. 35.
    Halbesma N, Kuiken DS, Brantsma AH et al (2006) Macroalbuminuria is a better risk marker than low estimated GFR to identify individuals at risk for accelerated GFR loss in population screening. J Am Soc Nephrol 17(9):2582–2590PubMedCrossRefGoogle Scholar
  36. 36.
    Ishani A, Grandits GA, Grimm RH et al (2006) Association of single measurements of dipstick proteinuria, estimated glomerular filtration rate, and hematocrit with 25-year incidence of end-stage renal disease in the multiple risk factor intervention trial. J Am Soc Nephrol 17:1444–1452PubMedCrossRefGoogle Scholar
  37. 37.
    Rule AD, Amer H, Cornell LD et al (2010) The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann Intern Med 152:561–567PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Cornell LD, Poggio ED (2011) Senile nephrosclerosis—does it explain the decline in glomerular filtration rate with aging? Nephron Physiol 119(Suppl 1):6–11Google Scholar
  39. 39.
    Gourtsoyiannis N, Prassopoulos P, Cavouras D, Pantelidis N (1990) The thickness of the renal parenchyma decreases with age: a CT study of 360 patients. AJR 155:541–544PubMedCrossRefGoogle Scholar
  40. 40.
    Carter JL, Stevens PE, Irving JE, Lamb EJ (2011) Estimating glomerular filtration rate: comparison of the CKD-EPI and MDRD equations in a large UK cohort with particular emphasis on the effect of age. QJM 104(10):839–847PubMedCrossRefGoogle Scholar
  41. 41.
    O’Hare AM, Choi AI, Bertenthal D et al (2007) Age affects outcomes in chronic kidney disease. J Am Soc Nephrol 18(10):2758–2765PubMedCrossRefGoogle Scholar
  42. 42.
    van der Velde M, Bakker SJ, de Jong PE, Gansevoort RT (2010) Influence of age and measure of eGFR on the association between renal function and cardiovascular events. Clin J Am Soc Nephrol 5(11):2053–2059PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Cao Y, Li W, Yang G, Liu Y, Li X (2012) Diabetes and hypertension have become leading causes of CKD in Chinese elderly patients: a comparison between 1990–1991 and 2009–2010. Int Urol Nephrol 44(4):1269–1276PubMedCrossRefGoogle Scholar
  44. 44.
    Parving HH, Lehnert H, Brochner-Mortensen J et al (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345:870–878PubMedCrossRefGoogle Scholar
  45. 45.
    Strippoli GF, Craig M, Schena FP, Craig JC (2005) Antihypertensive agents for primary prevention of diabetic nephropathy. J Am Soc Nephrol 16(10):3081–3091PubMedCrossRefGoogle Scholar
  46. 46.
    Hou FF, Zhang X, Zhang GH et al (2006) Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med 354(2):131–140PubMedCrossRefGoogle Scholar
  47. 47.
    de Zeeuw D, Remuzzi G, Parving HH et al (2004) Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 65(6):2309–2320PubMedCrossRefGoogle Scholar
  48. 48.
    Ruggenenti P, Perna A, Remuzzi G (2003) Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney Int 63(6):2254–2261PubMedCrossRefGoogle Scholar
  49. 49.
    Stevens LA, Greene T, Levey AS (2006) Surrogate end points for clinical trials of kidney disease progression. Clin J Am Soc Nephrol 1(4):874–884PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang L, Wang F, Wang L et al (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379(9818):815–822PubMedCrossRefGoogle Scholar
  51. 51.
    Nicola LD, Minutolo R, Chiodini P et al (2012) The effect of increasing age on the prognosis of non-dialysis patients with chronic kidney disease receiving stable nephrology care. Kidney Int 82(4):482–488PubMedCrossRefGoogle Scholar
  52. 52.
    Hallan SI, Matsushita K, Sang Y et al (2012) Chronic Kidney Disease Prognosis Consortium. Age and association of kidney measures with mortality and end-stage renal disease. JAMA 308(22):2349–2360PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Nephrology 2014

Authors and Affiliations

  • Conghui Liu
    • 1
  • Haiping Chen
    • 1
  • Cuiyun Liu
    • 1
  • Chen Fu
    • 1
  • Hui Zhang
    • 1
  • Huayu Yang
    • 1
  • Peng Wang
    • 1
  • Fan Wang
    • 1
  • Shujun Chen
    • 1
  • Qing Ma
    • 1
  1. 1.Beijing Friendship Hospital Affiliated with Capital Medical UniversityBeijingChina

Personalised recommendations