Advertisement

Ormoni neuroipofisari: regolatori non canonici della struttura, funzione e omeostasi del muscolo

  • Viviana Moresi
  • Dario Coletti
  • Sergio AdamoEmail author
Rassegna
  • 11 Downloads

Sommario

Nuovi, inaspettati ruoli degli ormoni neuroipofisari vasopressina e ossitocina sono emersi negli ultimi decenni. Gli effetti di tali ormoni sul muscolo striato sono stati oggetto di numerose ricerche in vitro e in vivo che hanno generato un’importante serie di dati circa la segnalazione intracellulare in cellule miogeniche, la loro risposta differenziativa, lo sviluppo e l’omeostasi del muscolo scheletrico. Riassumiamo qui gli studi su questi nuovi ruoli degli ormoni neuroipofisari, che aprono anche la possibilità di nuovi approcci terapeutici a patologie muscolari.

Parole chiave

Neuroipofisi Miogenesi Omeostasi muscolare Recettori Segnali intracellulari 

Notes

Ringraziamenti

Gli autori sono grati alla Dr.ssa Laura Fedele per l’assistenza nella preparazione della review.

Conflitto di interessi

Gli autori Viviana Moresi, Dario Coletti e Sergio Adamo dichiarano di non avere conflitti di interesse.

Consenso informato

Lo studio presentato in questo articolo non ha richiesto sperimentazione umana.

Studi sugli animali

Gli autori di questo articolo non hanno eseguito studi sugli animali.

Supplementary material

40619_2019_519_MOESM1_ESM.doc (24 kb)
(DOC 25 kB)
40619_2019_519_MOESM2_ESM.doc (24 kb)
(DOC 24 kB)

Bibliografia

  1. 1.
    Lechan RM, Toni R (2016) Functional anatomy of the hypothalamus and pituitary. In: De Groot L, Chrousos G, Dungan K (eds) Endotext. South Dartmouth Google Scholar
  2. 2.
    Costa A, Rossi E, Scicchitano BM et al. (2014) Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis. Eur J Trasl Med 24(3):217–225 Google Scholar
  3. 3.
    Musarò A, Giacinti C, Pelosi L et al. (2007) Stem cell-mediated muscle regeneration and repair in aging and neuromuscular diseases. Eur J Histochem 51:35–44 Google Scholar
  4. 4.
    Teti A, Naro F, Molinaro M, Adamo S (1993) Transduction of arginine vasopressin signal in skeletal myogenic cells. Am J Physiol 265(1):34–41 CrossRefGoogle Scholar
  5. 5.
    Alvisi M, De Arcangelis V, Ciccone L et al. (2008) V1a vasopressin receptor expression is modulated during myogenic differentiation. Differentiation 76(4):371–380 CrossRefGoogle Scholar
  6. 6.
    Breton C, Haenggeli C, Barberis C et al. (2002) Presence of functional oxytocin receptors in cultured human myoblasts. J Clin Endocrinol Metab 87(3):1415–1418 CrossRefGoogle Scholar
  7. 7.
    Nervi C, Benedetti L, Minasi A et al. (1995) Arginine-vasopressin induces differentiation of skeletal myogenic cells and up-regulation of myogenin and Myf-5. Cell Growth Differ 6(1):81–89 Google Scholar
  8. 8.
    Minotti S, Scicchitano BM, Nervi C et al. (1998) Vasopressin and insulin-like growth factors synergistically induce myogenesis in serum-free medium. Cell Growth Differ 9(2):155–163 Google Scholar
  9. 9.
    Naro F, Donchenko V, Minotti M et al. (1997) Role of phospholipase C and D signalling pathways in vasopressin-dependent myogenic differentiation. J Cell Physiol 171(1):34–42 CrossRefGoogle Scholar
  10. 10.
    Coletti D, Palleschi S, Silvestroni L et al. (2000) Surface remodeling associated with vasopressin-induced membrane traffic in L6 myogenic cells. Arch Histol Cytol 63(5):441–449 CrossRefGoogle Scholar
  11. 11.
    Scicchitano BM, Spath L, Musarò A et al. (2002) AVP induces myogenesis through the transcriptional activation of the myocyte enhancer factor 2. Mol Endocrinol 16(6):1407–1416 CrossRefGoogle Scholar
  12. 12.
    Scicchitano BM, Spath L, Musarò A et al. (2005) Vasopressin-dependent myogenic cell differentiation is mediated by both Ca2+/calmodulin-dependent kinase and calcineurin pathways. Mol Biol Cell 16(8):3632–3641 CrossRefGoogle Scholar
  13. 13.
    Stupka N, Gregorevic P, Plant DR, Lynch GS (2004) The calcineurin signal transduction pathway is essential for successful muscle regeneration in mdx dystrophic mice. Acta Neuropathol 107(4):299–310 CrossRefGoogle Scholar
  14. 14.
    Toschi A, Severi A, Coletti D et al. (2011) Skeletal muscle regeneration in mice is stimulated by local overexpression of V1a-vasopressin receptor. Mol Endocrinol 25(9):1661–1673 CrossRefGoogle Scholar
  15. 15.
    Dunn JD, Johnson BJ, Kayser JP et al. (2003) Effects of flax supplementation and a combined trenbolone acetate and estradiol implant on circulating insulin-like growth factor-I and muscle insulin-like growth factor-I messenger RNA levels in beef cattle. J Anim Sci 81(12):3028 CrossRefGoogle Scholar
  16. 16.
    Divari S, Pregel P, Cannizzo FT et al. (2013) Oxytocin precursor gene expression in bovine skeletal muscle is regulated by 17\(\beta \)-oestradiol and dexamethasone. Food Chem 141(4):4358–4366 CrossRefGoogle Scholar
  17. 17.
    Elabd C, Cousin W, Upadhyayula P et al. (2014) Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun 5:4082 CrossRefGoogle Scholar
  18. 18.
    Moresi V, Garcia-Alvarez G, Pristerà A et al. (2009) Modulation of caspase activity regulates skeletal muscle regeneration and function in response to vasopressin and tumor necrosis factor. PLoS ONE 4(5):e5570 CrossRefGoogle Scholar
  19. 19.
    Costa A, Toschi A, Murfuni I et al. (2014) Local overexpression of V1a-vasopressin receptor enhances regeneration in tumor necrosis factor-induced muscle atrophy. BioMed Res Int 2014:235426 Google Scholar
  20. 20.
    Liviakis LR, Stebbins CL (2000) Static contraction causes a reflex-induced release of arginine vasopressin in anesthetized cats. Brain Res Bull 53(2):233–238 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sezione di Istologia ed Embriologia Medica, Dipartimento SAIMLALSapienza UniversitàRomaItalia

Personalised recommendations