Advertisement

Effects of renin–angiotensin system blockers on renal and cardiovascular outcomes in patients with diabetic nephropathy: a meta-analysis of randomized controlled trials

  • X. Liu
  • L. Ma
  • Z. LiEmail author
Original Article

Abstract

Purpose

This study aimed to evaluate the effect f angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) on renal or cardiovascular outcomes in patients with diabetic nephropathy (DN).

Methods

PubMed, Embase, and Cochrane Library were searched for randomized controlled trials (RCTs) evaluating the treatment effects of ACEI and ARB on renal or cardiovascular outcomes in patients with DN until August 2017. The outcomes included end-stage renal disease (ESRD), doubling of serum creatinine levels, all-cause mortality, major cardiovascular events (MACEs), myocardial infarction (MI), stroke, and cardiac death. Relative risks (RR) with 95% confidence intervals (CIs) were used for calculating the summary results using a random-effects model.

Results

Twenty-four RCTs including 57,818 patients with DN and 891 events of ESRD, 1050 doubling of serum creatinine concentration, 4352 all-cause mortality, 6342 MACEs, 1073 MI, 2900 stroke, and 1674 cardiac deaths were reported. Overall, the summary results suggested that in patients with DN, receiving ACEI did not have a significant effect on ESRD, doubling of serum creatinine levels, all-cause mortality, MI, stroke, and cardiac death, while ACEI significantly reduced the risk of total MACEs. Furthermore, ARB therapy was associated with a low risk of ESRD and doubling of serum creatinine levels, while it did not differ significantly on all-cause mortality, MACEs, MI, stroke, and cardiac death in patients with DN.

Conclusions

Patients with DN receiving ACEI had significantly reduced the risk of total MACEs, and ARB could reduce the incidence of ESRD and the doubling of serum creatinine levels.

Keywords

Diabetic nephropathy ACEI ARB Meta-analysis 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Supplementary material

40618_2020_1179_MOESM1_ESM.doc (152 kb)
Supplementary file1 (DOC 152 kb)
40618_2020_1179_MOESM2_ESM.doc (341 kb)
Supplementary file2 (DOC 341 kb)
40618_2020_1179_MOESM3_ESM.docx (42 kb)
Supplementary file3 (DOCX 42 kb)

References

  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053PubMedCrossRefGoogle Scholar
  2. 2.
    IDF Diabetes Atlas, 9th edition 2019. https://diabetesatlas.org/en/resources/. Retrieved 2 Dec 2019
  3. 3.
    (2019) Introduction: standards of medical care in diabetes-2019. Diabetes Care 42:S1–S2.  https://doi.org/10.2337/dc19-Sint01
  4. 4.
    Albvr VR, Tan SH, Candasamy M, Bhattamisra SK (2019) Diabetic nephropathy: an update on pathogenesis and drug development. Diabetes Metab Syndr 13:754–762CrossRefGoogle Scholar
  5. 5.
    Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML et al (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164–176PubMedCrossRefGoogle Scholar
  6. 6.
    Levey AS, Cattran D, Friedman A, Miller WG, Sedor J et al (2009) Proteinuria as a surrogate outcome in CKD: report of a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis 54:205–226PubMedCrossRefGoogle Scholar
  7. 7.
    Lv Y, Zou Z, Chen GM, Jia HX, Zhong J et al (2010) Amlodipine and angiotensin-converting enzyme inhibitor combination versus amlodipine monotherapy in hypertension: a meta-analysis of randomized controlled trials. Blood Press Monit 15:195–204PubMedCrossRefGoogle Scholar
  8. 8.
    Wu L, Deng SB, She Q (2014) Calcium channel blocker compared with angiotensin receptor blocker for patients with hypertension: a meta-analysis of randomized controlled trials. J Clin Hypertens (Greenwich) 16:838–845CrossRefGoogle Scholar
  9. 9.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097CrossRefGoogle Scholar
  10. 10.
    Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRefGoogle Scholar
  12. 12.
    Ades AE, Lu G, Higgins JP (2005) The interpretation of random-effects meta-analysis in decision models. Med Decis Making 25:646–654PubMedCrossRefGoogle Scholar
  13. 13.
    Deeks JJ, Higgins JPT, Altman DG (2008) Analyzing data and undertaking meta-analyses. In: Higgins JP, Green S (eds) Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration, Oxford, p 501Google Scholar
  14. 14.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ 326:219PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tobias A (1999) Assessing the influence of a single study in meta-analysis. Stata Tech Bull 47:15–17Google Scholar
  17. 17.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Parving HH, Hommel E, Damkjaer Nielsen M, Giese J (1989) Effect of captopril on blood pressure and kidney function in normotensive insulin dependent diabetics with nephropathy. BMJ 299:533–536PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bauer JH, Reams GP, Hewett J, Klachko D, Lau A et al (1992) A randomized, double-blind, placebo-controlled trial to evaluate the effect of enalapril in patients with clinical diabetic nephropathy. Am J Kidney Dis 20:443–457PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ravid M, Savin H, Jutrin I, Bental T, Katz B et al (1993) Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med 118:577–581PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329:1456–1462PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Laffel LM, McGill JB, Gans DJ (1995) The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. North American Microalbuminuria Study Group. Am J Med 99:497–504PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Maschio G, Alberti D, Janin G, Locatelli F, Mann JF et al (1996) Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med 334:939–945PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Sano T, Hotta N, Kawamura T, Matsumae H, Chaya S et al (1996) Effects of long-term enalapril treatment on persistent microalbuminuria in normotensive type 2 diabetic patients: results of a 4-year, prospective, randomized study. Diabet Med 13:120–124PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Nankervis A, Nicholls K, Kilmartin G, Allen P, Ratnaike S et al (1998) Effects of perindopril on renal histomorphometry in diabetic subjects with microalbuminuria: a 3-year placebo-controlled biopsy study. Metabolism 47:12–15PubMedCrossRefGoogle Scholar
  27. 27.
    (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart outcomes prevention evaluation study investigators. Lancet 355:253–259Google Scholar
  28. 28.
    Katayama S, Kikkawa R, Isogai S, Sasaki N, Matsuura N et al (2002) Effect of captopril or imidapril on the progression of diabetic nephropathy in Japanese with type 1 diabetes mellitus: a randomized controlled study (JAPAN-IDDM). Diabetes Res Clin Pract 55:113–121PubMedCrossRefGoogle Scholar
  29. 29.
    Marre M, Lievre M, Chatellier G, Mann JF, Passa P et al (2004) Effects of low dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: randomised, double blind, placebo controlled trial (the DIABHYCAR study). BMJ 328:495PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Patel A, Grop AC, MacMahon S, Chalmers J, Neal B et al (2007) Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 370:829–840PubMedCrossRefGoogle Scholar
  31. 31.
    Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A et al (2009) Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361:40–51PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA et al (2013) Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med 369:1892–1903PubMedCrossRefGoogle Scholar
  33. 33.
    Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S et al (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345:870–878PubMedCrossRefGoogle Scholar
  34. 34.
    Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA et al (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345:851–860PubMedCrossRefGoogle Scholar
  35. 35.
    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869PubMedCrossRefGoogle Scholar
  36. 36.
    Yusuf S, Diener HC, Sacco RL, Cotton D, Ounpuu S et al (2008) Telmisartan to prevent recurrent stroke and cardiovascular events. N Engl J Med 359:1225–1237PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chaturvedi N, Porta M, Klein R, Orchard T, Fuller J et al (2008) Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials. Lancet 372:1394–1402PubMedCrossRefGoogle Scholar
  38. 38.
    Bilous R, Chaturvedi N, Sjolie AK, Fuller J, Klein R et al (2009) Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann Intern Med 151(11–20):W13–14Google Scholar
  39. 39.
    Sjolie AK, Klein R, Porta M, Orchard T, Fuller J et al (2008) Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial. Lancet 372:1385–1393PubMedCrossRefGoogle Scholar
  40. 40.
    Imai E, Chan JC, Ito S, Yamasaki T, Kobayashi F et al (2011) Effects of olmesartan on renal and cardiovascular outcomes in type 2 diabetes with overt nephropathy: a multicentre, randomised, placebo-controlled study. Diabetologia 54:2978–2986PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Haller H, Ito S, Izzo JL Jr, Januszewicz A, Katayama S et al (2011) Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med 364:907–917PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yamashita K, Kondo T, Muramatsu T, Matsushita K, Nagahiro T et al (2013) Effects of valsartan versus amlodipine in diabetic hypertensive patients with or without previous cardiovascular disease. Am J Cardiol 112:1750–1756PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sarafidis PA, Stafylas PC, Kanaki AI, Lasaridis AN (2008) Effects of renin-angiotensin system blockers on renal outcomes and all-cause mortality in patients with diabetic nephropathy: an updated meta-analysis. Am J Hypertens 21:922–929PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Wang ZJ, Zhou YJ, Galper BZ, Gao F, Yeh RW et al (2015) Association of body mass index with mortality and cardiovascular events for patients with coronary artery disease: a systematic review and meta-analysis. Heart 101:1631–1638PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Qi W, Zhang N, Korantzopoulos P, Letsas KP, Cheng M et al (2017) Serum glycated hemoglobin level as a predictor of atrial fibrillation: A systematic review with meta-analysis and meta-regression. PLoS ONE 12:e0170955PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2020

Authors and Affiliations

  1. 1.Department of NephrologyBeijing Luhe Hospital, Capital Medical UniversityBeijingChina
  2. 2.Department of NephrologyBeijing Chaoyang Hospital, Capital Medical UniversityBeijingChina

Personalised recommendations