Local ablative therapy of oligoprogressive TKI-treated thyroid cancer

  • T. PorcelliEmail author
  • F. Sessa
  • C. Luongo
  • D. Salvatore
Short Review


Metastatic cancer patients generally respond well to treatment with tyrosine kinase inhibitors (TKIs). However, TKI resistance occurs in almost all cases and often leads to a change in treatment. Recent guidelines, including thyroid cancer, raised the possibility of locally treating TKI-resistant oligoprogressive disease, i.e., one or a few progressing lesions in an otherwise treatment-responsive metastatic cancer, thereby obviating the need to change the ongoing TKI. To determine the benefits of this intervention, we reviewed studies on the use of LAT for TKI-treated oligoprogressive cancers. We found that in non-small cell lung cancer at least, LAT prolongs disease control and the duration of exposure to a TKI irrespective of the LAT used. Moreover, we reviewed the local ablative therapies (LATs) that are feasible for the local control of oligoprogressive thyroid cancer. Lastly, we report two illustrative cases of patients with oligoprogressive thyroid cancer treated with two different LATs while on therapy with TKIs. Both LATs extended the duration of disease control and the time of exposure to the ongoing TKI, thereby indicating that LAT is a favorable option for TKI-treated oligoprogressive thyroid cancer. Prospective randomized studies are needed to verify the benefit of LATs in terms of progression-free and overall survival in this increasingly frequent clinical setting.


Thyroid cancer Metastatic thyroid cancer Oligoprogression Local ablative therapy Tyrosine kinase inhibitors Lenvatinib 



We thank Jean Ann Gilder (Scientific Communication srl., Naples, Italy) for writing assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain studies with human participants or animals performed by any of the authors.

Informed consent

The patients provided written informed consent for research participation and for the publication of indirectly identifiable data.


  1. 1.
    Droz JP, Schlumberger M, Rougier P et al (1990) Chemotherapy in metastatic nonanaplastic thyroid cancer: experience at the Institut Gustave-Roussy. Tumori 76(5):480–483CrossRefGoogle Scholar
  2. 2.
    Schiller JH, Harrington D, Belani CP et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346(2):92–98. CrossRefPubMedGoogle Scholar
  3. 3.
    Schmid TA, Gore ME (2016) Sunitinib in the treatment of metastatic renal cell carcinoma. Ther Adv Urol 8(6):348–371. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sapuppo G, Tavarelli M, Russo M et al (2018) Lymph node location is a risk factor for papillary thyroid cancer-related death. J Endocrinol Invest 41(11):1349–1353. CrossRefPubMedGoogle Scholar
  5. 5.
    Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26(1):1–133. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hanna N, Johnson D, Temin S et al (2017) Systemic therapy for stage iv non-small-cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol 35(30):3484–3515. CrossRefPubMedGoogle Scholar
  7. 7.
    Escudier B, Potra C, Schmidinger M et al (2016) Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 27(suppl 5):58–68. CrossRefGoogle Scholar
  8. 8.
    Novello S, Barlesi F, Califano R et al (2016) Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27(suppl 5):1–27. CrossRefGoogle Scholar
  9. 9.
    Winkler GC, Lovsin Barle E, Galati G et al (2014) Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics. Regul Toxicol Pharmacol 70(1):46–53. CrossRefPubMedGoogle Scholar
  10. 10.
    Camidge DR, Pao W, Sequist LV (2014) Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol 11(8):473–481. CrossRefPubMedGoogle Scholar
  11. 11.
    Westover D, Zugazagoitia J, Cho BC et al (2018) Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol 29(suppl 1):10–19. CrossRefGoogle Scholar
  12. 12.
    Lin JJ, Shaw AT (2016) Resisting resistance: targeted therapies in lung cancer. Trends Cancer 2(7):350–364. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gandara DR, Li T, Lara PN Jr et al (2014) Acquired resistance to targeted therapies against oncogene-driven non-small-cell lung cancer: approach to subtyping progressive disease and clinical implications. Clin Lung Cancer 15(1):1–6. CrossRefPubMedGoogle Scholar
  14. 14.
    Morgan RL, Camidge DR (2018) Reviewing RECIST in the era of prolonged and targeted therapy. J Thorac Oncol 13(2):154–164. CrossRefPubMedGoogle Scholar
  15. 15.
    Castellanos EH, Horn L (2016) Re-Evaluating progression in an era of progress: a review of first- and second-line treatment options in anaplastic lymphoma kinase-positive non-small cell lung cancer. Oncologist 21(6):755–761. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mazzeo S, Cervelli R, Elisei R et al (2018) mRECIST criteria to assess recurrent thyroid carcinoma treatment response after radiofrequency ablation: a prospective study. J Endocrinol Invest 41(12):1389–1399. CrossRefPubMedGoogle Scholar
  17. 17.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. CrossRefPubMedGoogle Scholar
  18. 18.
    Oxnard GR, Morris MJ, Hodi FS et al (2012) When progressive disease does not mean treatment failure: reconsidering the criteria for progression. J Natl Cancer Inst 104(20):1534–1541. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wells SA Jr, Asa SL, Dralle H et al (2015) Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25(6):567–610. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Motzer RJ, Jonasch E, Agarwal N et al (2017) Kidney cancer, Version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 15(6):804–834. CrossRefGoogle Scholar
  21. 21.
    Park K, Yu CJ, Kim SW et al (2016) First-line erlotinib therapy until and beyond response evaluation criteria in solid tumors progression in asian patients with epidermal growth factor receptor mutation-positive non-small-cell lung cancer: the ASPIRATION Study. JAMA Oncol 2(3):305–312. CrossRefPubMedGoogle Scholar
  22. 22.
    Goto Y, Tanai C, Yoh K et al (2017) Continuing EGFR-TKI beyond radiological progression in patients with advanced or recurrent, EGFR mutation-positive non-small-cell lung cancer: an observational study. ESMO Open 2(4):e000214. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tudor RA, D’Silva A, Tremblay A et al (2017) Beyond disease-progression: clinical outcomes after EGFR-TKIs in a cohort of EGFR mutated NSCLC patients. PLoS One 12(8):e0181867. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hellman S (1994) Karnofsky memorial lecture. Natural history of small breast cancers. J Clin Oncol 12(10):2229–2234CrossRefGoogle Scholar
  25. 25.
    Hellman S, Weichselbaum RR (1995) Oligometastases. J Clin Oncol 13(1):8–10CrossRefGoogle Scholar
  26. 26.
    Weickhardt AJ, Scheier B, Burke JM et al (2012) Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol 7(12):1807–1814. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Triggiani L, Alongi F, Buglione M et al (2017) Efficacy of stereotactic body radiotherapy in oligorecurrent and in oligoprogressive prostate cancer: new evidence from a multicentric study. Br J Cancer 116(12):1520–1525. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kelly P, Ma Z, Baidas S et al (2017) Patterns of progression in metastatic estrogen receptor positive breast cancer: an argument for local therapy. Int J Breast Cancer 2017:1367159. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wray J, Hawamdeh RF, Hasija N et al (2017) Stereotactic body radiation therapy for oligoprogression of metastatic disease from gastrointestinal cancers: a novel approach to extend chemotherapy efficacy. Oncol Lett 13(3):1087–1094. CrossRefPubMedGoogle Scholar
  30. 30.
    Pacini F, Basolo F, Bellantone R et al (2018) Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. J Endocrinol Invest 41(7):849–876. CrossRefPubMedGoogle Scholar
  31. 31.
    Antonelli A, Ferrari SM, Fallahi P (2018) Current and future immunotherapies for thyroid cancer. Expert Rev Anticancer Ther 18(2):149–159. CrossRefPubMedGoogle Scholar
  32. 32.
    Sherman EJ, Dunn LA, Ho AL et al (2017) Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer. Cancer 123(21):4114–4121. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schneider TC, de Wit D, Links TP et al (2015) Beneficial effects of the mtor inhibitor everolimus in patients with advanced medullary thyroid carcinoma: subgroup results of a phase II trial. Int J Endocrinol 2015:348124. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rusthoven KE, Kavanagh BD, Burri SH et al (2009) Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases. J Clin Oncol 27(10):1579–1584. CrossRefPubMedGoogle Scholar
  35. 35.
    Fode MM, Hoyer M (2015) Survival and prognostic factors in 321 patients treated with stereotactic body radiotherapy for oligo-metastases. Radiother Oncol 114(2):155–160. CrossRefPubMedGoogle Scholar
  36. 36.
    Campo M, Al-Halabi H, Khandekar M et al (2016) Integration of stereotactic body radiation therapy with tyrosine kinase inhibitors in stage IV oncogene-driven lung cancer. Oncologist 21(8):964–973. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lo SS, Fakiris AJ, Chang EL et al (2010) Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol 7(1):44–54. CrossRefPubMedGoogle Scholar
  38. 38.
    de Baere T, Auperin A, Deschamps F et al (2015) Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol 26(5):987–991. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    de Baere T, Tselikas L, Woodrum D et al (2015) Evaluating cryoablation of metastatic lung tumors in patients-safety and efficacy: the ECLIPSE trial-interim analysis at 1 year. J Thorac Oncol 10(10):1468–1474. CrossRefPubMedGoogle Scholar
  40. 40.
    Bhattacharya IS, Hoskin PJ (2015) Stereotactic body radiotherapy for spinal and bone metastases. Clin Oncol (R Coll Radiol) 27(5):298–306. CrossRefGoogle Scholar
  41. 41.
    Wang XS, Rhines LD, Shiu AS et al (2012) Stereotactic body radiation therapy for management of spinal metastases in patients without spinal cord compression: a phase 1-2 trial. Lancet Oncol 13(4):395–402. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bernstein MB, Chang EL, Amini B et al (2016) Spine stereotactic radiosurgery for patients with metastatic thyroid cancer: secondary analysis of phase I/II trials. Thyroid 26(9):1269–1275. CrossRefPubMedGoogle Scholar
  43. 43.
    Cazzato RL, Auloge P, De Marini P et al (2018) Percutaneous image-guided ablation of bone metastases: local tumor control in oligometastatic patients. Int J Hyperthermia 5:1–7. CrossRefGoogle Scholar
  44. 44.
    Deschamps F, Farouil G, Ternes N et al (2014) Thermal ablation techniques: a curative treatment of bone metastases in selected patients? Eur Radiol 24(8):1971–1980. CrossRefPubMedGoogle Scholar
  45. 45.
    Covey AM, Sofocleous CT (2008) Radiofrequency ablation as a treatment strategy for liver metastases from breast cancer. Semin Intervent Radiol 25(4):406–412. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shady W, Petre EN, Gonen M et al (2016) Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes—a 10-year experience at a single center. Radiology 278(2):601–611. CrossRefPubMedGoogle Scholar
  47. 47.
    Jackson WC, Tao Y, Mendiratta-Lala M et al (2018) Comparison of stereotactic body radiation therapy and radiofrequency ablation in the treatment of intrahepatic metastases. Int J Radiat Oncol Biol Phys 100(4):950–958. CrossRefPubMedGoogle Scholar
  48. 48.
    Paul SB, Sharma H (2014) Role of transcatheter intra-arterial therapies for hepatocellular carcinoma. J Clin Exp Hepatol 4(suppl 3):112–121. CrossRefGoogle Scholar
  49. 49.
    Kudo M, Arizumi T (2017) Transarterial chemoembolization in combination with a molecular targeted agent: lessons learned from negative trials (Post-TACE, BRISK-TA, SPACE, ORIENTAL, and TACE-2). Oncology 93(suppl 1):127–134. CrossRefPubMedGoogle Scholar
  50. 50.
    Henriques de Figueiredo B, Godbert Y, Soubeyran I et al (2014) Brain metastases from thyroid carcinoma: a retrospective study of 21 patients. Thyroid 24(2):270–276. CrossRefPubMedGoogle Scholar
  51. 51.
    Johung KL, Yeh N, Desai NB et al (2016) Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis. J Clin Oncol 34(2):123–129. CrossRefPubMedGoogle Scholar
  52. 52.
    Aoyama H, Shirato H, Tago M et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295(21):2483–2491CrossRefGoogle Scholar
  53. 53.
    Magnuson WJ, Lester-Coll NH, Wu AJ et al (2017) Management of brain metastases in tyrosine kinase inhibitor-naive epidermal growth factor receptor-mutant non-small-cell lung cancer: a retrospective multi-institutional analysis. J Clin Oncol 35(10):1070–1077. CrossRefPubMedGoogle Scholar
  54. 54.
    Shukuya T, Takahashi T, Naito T et al (2011) Continuous EGFR-TKI administration following radiotherapy for non-small cell lung cancer patients with isolated CNS failure. Lung Cancer 74(3):457–461. CrossRefPubMedGoogle Scholar
  55. 55.
    Conforti F, Catania C, Toffalorio F et al (2013) EGFR tyrosine kinase inhibitors beyond focal progression obtain a prolonged disease control in patients with advanced adenocarcinoma of the lung. Lung Cancer 81(3):440–444. CrossRefPubMedGoogle Scholar
  56. 56.
    Takeda M, Okamoto I, Nakagawa K (2013) Clinical impact of continued crizotinib administration after isolated central nervous system progression in patients with lung cancer positive for ALK rearrangement. J Thorac Oncol 8(5):654–657. CrossRefPubMedGoogle Scholar
  57. 57.
    Yu HA, Sima CS, Huang J et al (2013) Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol 8(3):346–351. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gan GN, Weickhardt AJ, Scheier B et al (2014) Stereotactic radiation therapy can safely and durably control sites of extra-central nervous system oligoprogressive disease in anaplastic lymphoma kinase-positive lung cancer patients receiving crizotinib. Int J Radiat Oncol Biol Phys 88(4):892–898. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hasegawa T, Sawa T, Futamura Y et al (2015) Feasibility of rebiopsy in non-small cell lung cancer treated with epidermal growth factor receptor-tyrosine kinase inhibitors. Intern Med 54(16):1977–1980. CrossRefPubMedGoogle Scholar
  60. 60.
    Yoshida T, Yoh K, Niho S et al (2015) RECIST progression patterns during EGFR tyrosine kinase inhibitor treatment of advanced non-small cell lung cancer patients harboring an EGFR mutation. Lung Cancer 90(3):477–483. CrossRefPubMedGoogle Scholar
  61. 61.
    Ni Y, Bi J, Ye X et al (2016) Local microwave ablation with continued EGFR tyrosine kinase inhibitor as a treatment strategy in advanced non-small cell lung cancers that developed extra-central nervous system oligoprogressive disease during EGFR tyrosine kinase inhibitor treatment: a pilot study. Medicine (Baltimore) 95(25):e3998. CrossRefGoogle Scholar
  62. 62.
    Chan OSH, Lee VHF, Mok TSK et al (2017) The role of radiotherapy in epidermal growth factor receptor mutation-positive patients with oligoprogression: a matched-cohort analysis. Clin Oncol (R Coll Radiol) 29(9):568–575. CrossRefGoogle Scholar
  63. 63.
    Qiu B, Liang Y, Li Q et al (2017) Local therapy for oligoprogressive disease in patients with advanced stage non-small-cell lung cancer harboring epidermal growth factor receptor mutation. Clin Lung Cancer 18(6):369–373. CrossRefGoogle Scholar
  64. 64.
    Li X, Qi H, Qing G et al (2018) Microwave ablation with continued EGFR tyrosine kinase inhibitor therapy prolongs disease control in non-small-cell lung cancers with acquired resistance to EGFR tyrosine kinase inhibitors. Thorac Cancer 9(8):1012–1017. CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Straka C, Kim DW, Timmerman RD et al (2013) Ablation of a site of progression with stereotactic body radiation therapy extends sunitinib treatment from 14 to 22 months. J Clin Oncol 31(23):401–403. CrossRefGoogle Scholar
  66. 66.
    Roberto M, Falcone R, Mazzuca F et al (2017) The role of stereotactic body radiation therapy in oligometastatic colorectal cancer: clinical case report of a long-responder patient treated with regorafenib beyond progression. Medicine (Baltimore) 96(48):e9023. CrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2019

Authors and Affiliations

  • T. Porcelli
    • 1
    Email author
  • F. Sessa
    • 1
  • C. Luongo
    • 1
  • D. Salvatore
    • 2
  1. 1.Department of Clinical Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
  2. 2.Department of Public HealthUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations