Advertisement

Journal of Endocrinological Investigation

, Volume 42, Issue 12, pp 1467–1476 | Cite as

Prevalence of endocrine disorders and their associated factors in transfusion-dependent thalassemia patients: a historical cohort study in Southern Iran

  • M. Bordbar
  • H. Bozorgi
  • F. Saki
  • S. Haghpanah
  • M. Karimi
  • A. Bazrafshan
  • O. R. ZekavatEmail author
Original Article

Abstract

Purpose

Transfusion-dependent beta-thalassemia (TDT) patients suffer from various endocrinopathies. The main contributing factor associated with these complications is iron overload, secondary to frequent blood transfusions. To improve patients’ quality of life, we evaluated the prevalence of endocrine disorders while considering the associated factors for further assessment.

Methods

Seven hundred thirteen transfusion-dependent thalassemia patients with age range 10–62 years were enrolled in this study. Serum calcium, phosphorous, fast blood sugar, ferritin, 25-OH vitamin D, free thyroxin, thyroid-stimulating hormone and parathyroid hormone were assessed. Bone mineral density was measured by dual-energy X-ray absorptiometry.

Results

In total, 86.8% of the TDT patients suffered from at least one endocrinopathy. The prevalence of endocrinopathies in descending order of frequency was low bone mass (72.6%), hypogonadism (44.5%), diabetes mellitus (15.9%), hypoparathyroidism (13.2%), and hypothyroidism (10.7%). Age, body mass index and splenectomy were significantly associated with most of the endocrine disorders.

Conclusion

Endocrine complications are frequently observed in TDT patients. Splenectomy is a major risk factor and should be generally avoided unless it is highly indicated. Periodic surveillance of endocrine function and proper management of iron overload are advised.

Keywords

Endocrinopathy Transfusion-dependent beta-thalassemia Risk factors 

Notes

Acknowledgements

The author would like to thank Shiraz University of Medical Science, also the Center for Development of Clinical Research of Namazee Hospital. The authors wish to thank Mr. H. Argasi at the Research Consultation Center (RCC) of Shiraz University of Medical Sciences for his invaluable assistance in editing this manuscript.

Compliance with ethical standards

Conflict of interest

None of the authors has financial disclosures or any conflict of interest to be declared.

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    De Sanctis V, Elsedfy H, Soliman AT, Elhakim IZ, Soliman NA, Elalaily R et al (2016) Endocrine profile of β-thalassemia major patients followed from childhood to advanced adulthood in a tertiary care center. Indian J Endocrinol Metab 20(4):451CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dhouib NG, Khaled MB, Ouederni M, Besbes H, Kouki R, Mellouli F et al (2018) Growth and endocrine function in Tunisian thalassemia major patients. Mediterr J Hematol Infect Dis 10(1):e2018031CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    De Sanctis V, Soliman AT, Yassin MA, Di Maio S, Daar S, Elsedfy H et al (2018) Hypogonadism in male thalassemia major patients: pathophysiology, diagnosis and treatment. Acta Bio Medica Atenei Parmensis 89(2-S):6–15PubMedPubMedCentralGoogle Scholar
  4. 4.
    Farmaki K, Tzoumari I, Pappa C, Chouliaras G, Berdoukas V (2010) Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol 148(3):466–475CrossRefPubMedGoogle Scholar
  5. 5.
    De Sanctis V, Soliman AT, Elsedfy H, Skordis N, Kattamis C, Angastiniotis M et al (2013) Growth and endocrine disorders in thalassemia: the international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J Endocrinol Metab 17(1):8CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Belhoul KM, Bakir ML, Saned M-S, Kadhim AM, Musallam KM, Taher AT (2012) Serum ferritin levels and endocrinopathy in medically treated patients with β thalassemia major. Ann Hematol 91(7):1107–1114CrossRefPubMedGoogle Scholar
  7. 7.
    Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, Fuleihan GE-H, Kutilek S et al (2008) Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 11(1):43–58CrossRefPubMedGoogle Scholar
  8. 8.
    Lim JU, Lee JH, Kim JS, Hwang YI, Kim T-H, Lim SY et al (2017) Comparison of World Health Organization and Asia-Pacific body mass index classifications in COPD patients. Int J Chronic Obstr Pulm Dis 12:2465CrossRefGoogle Scholar
  9. 9.
    De Sanctis V, Al Jaouni SK, Elsedfy H, Karimi M, Mousa S, Soliman AT et al (2015) Selected highlights of the IX international symposium of clinicians for endocrinopathies in Thalassemia and adolescent medicine (ICET-A) on growth, and endocrine complications in Thalassaemia. Rivista Italiana di Medicina dell’Adolescenza-Volume 13(1):1–13Google Scholar
  10. 10.
    Haghpanah S, Jelodari S, Karamifar H, Saki F, Rahimi R, De VS et al (2018) The frequency of hypothyroidism and its relationship with HCV positivity in patients with thalassemia major in southern Iran. Acta Bio Medica Atenei Parmensis 89(1):55–60PubMedPubMedCentralGoogle Scholar
  11. 11.
    Introduction: Standards of Medical Care in Diabetes-2018 (2018) Diabetes Care 41(Suppl 1):S1–S2Google Scholar
  12. 12.
    Laird E, O’halloran AM, Carey D, Healy M, O’connor D, Moore P et al (2017) The prevalence of vitamin D deficiency and the determinants of 25 (OH) D concentration in older Irish adults: data from The Irish Longitudinal Study on Ageing (TILDA). J Gerontol Ser A 73(4):519–525CrossRefGoogle Scholar
  13. 13.
    Adil A, Sobani ZA, Jabbar A, Adil SN, Awan S (2012) Endocrine complications in patients of beta thalassemia major in a tertiary care hospital in Pakistan. J Pak Med Assoc 62(3):307PubMedGoogle Scholar
  14. 14.
    Gulati R, Bhatia V, Agarwal S (2000) Early onset of endocrine abnormalities in ß-thalassemia major in a developing country. J Pediatr Endocrinol Metab 13(6):651–656CrossRefPubMedGoogle Scholar
  15. 15.
    De Sanctis V, Soliman AT, Elsefdy H, Soliman N, Bedair E, Fiscina B et al (2018) Bone disease in β thalassemia patients: past, present and future perspectives. Metabolism 80:66–79CrossRefPubMedGoogle Scholar
  16. 16.
    Mirhosseini NZ, Shahar S, Ghayour-Mobarhan M, Banihashem A, Kamaruddin NA, Hatef MR et al (2013) Bone-related complications of transfusion-dependent beta thalassemia among children and adolescents. J Bone Miner Metab 31(4):468–476CrossRefPubMedGoogle Scholar
  17. 17.
    Vogiatzi MG, Autio KA, Mait JE, Schneider R, Lesser M, Giardina PJ (2005) Low bone mineral density in adolescents with β-thalassemia. Ann N Y Acad Sci 1054(1):462–466CrossRefPubMedGoogle Scholar
  18. 18.
    Pollak RD, Rachmilewitz E, Blumenfeld A, Idelson M, Goldfarb AW (2000) Bone mineral metabolism in adults with β-thalassaemia major and intermedia. Br J Haematol 111(3):902–907Google Scholar
  19. 19.
    Vogiatzi MG, Macklin EA, Fung EB, Cheung AM, Vichinsky E, Olivieri N et al (2009) Bone disease in thalassemia: a frequent and still unresolved problem. J Bone Miner Res 24(3):543–557CrossRefPubMedGoogle Scholar
  20. 20.
    Shamshirsaz A, Bekheirnia M, Kamgar M, Pakbaz Z, Tabatabaie S, Bouzari N et al (2007) Bone mineral density in Iranian adolescents and young adults with β-thalassemia major. Pediatr Hematol Oncol 24(7):469–479CrossRefPubMedGoogle Scholar
  21. 21.
    Jensen C, Tuck S, Agnew J, Koneru S, Morris R, Yardumian A et al (1998) High prevalence of low bone mass in thalassaemia major. Br J Haematol 103(4):911–915CrossRefPubMedGoogle Scholar
  22. 22.
    Poggi M, Sorrentino F, Pugliese P, Smacchia MP, Daniele C, Equitani F et al (2016) Longitudinal changes of endocrine and bone disease in adults with beta-thalassemia major receiving different iron chelators over 5 years. Ann Hematol 95(5):757–763CrossRefPubMedGoogle Scholar
  23. 23.
    Zekavat OR, Bordbar M, Haghpanah S, Saki F, Bazrafshan A, Bozorgi H (2019) Comparative effectiveness of alendronate and zoledronic acid on bone mass improvement in transfusion-dependent thalassemia patients. J Bone Miner Metab.  https://doi.org/10.1007/s00774-019-01003-1 CrossRefGoogle Scholar
  24. 24.
    Di Stefano M, Chiabotto P, Roggia C, Garofalo F, Lala R, Piga A et al (2004) Bone mass and metabolism in thalassemic children and adolescents treated with different iron-chelating drugs. J Bone Miner Metab 22(1):53–57CrossRefPubMedGoogle Scholar
  25. 25.
    Olivieri NF, Koren G, Harris J, Khattak S, Freedman MH, Templeton DM et al (1992) Growth failure and bony changes induced by deferoxamine. Am J Pediatr Hematol Oncol 14(1):48–56CrossRefPubMedGoogle Scholar
  26. 26.
    De Sanctis V, Soliman AT, Elsedfy H, Di Maio S, Canatan D, Soliman N et al (2017) Gonadal dysfunction in adult male patients with thalassemia major: an update for clinicians caring for thalassemia. Expert Rev Hematol 10(12):1095–1106CrossRefPubMedGoogle Scholar
  27. 27.
    Wu HP, Lin CL, Chang YC, Wu KH, Lei RL, Peng CT et al (2017) Survival and complication rates in patients with thalassemia major in Taiwan. Pediatr Blood Cancer 64(1):135–138CrossRefPubMedGoogle Scholar
  28. 28.
    Habeb AM, Al-Hawsawi ZM, Morsy MM, Al-Harbi AM, Osilan AS, Al-Magamsi MS et al (2013) Endocrinopathies in beta-thalassemia major. Prevalence, risk factors, and age at diagnosis in Northwest Saudi Arabia. Saudi Med J 34(1):67–73PubMedGoogle Scholar
  29. 29.
    Yaghobi M, Miri-Moghaddam E, Majid N, Bazi A, Navidian A, Kalkali A (2017) Complications of transfusion-dependent beta-thalassemia patients in Sistan and Baluchistan, South-East of Iran. Int J Hematol Oncol Stem Cell Res 11(4):268–272PubMedPubMedCentralGoogle Scholar
  30. 30.
    De Sanctis V, Elsedfy H, Soliman AT, Elhakim IZ, Kattamis C, Soliman NA et al (2016) Clinical and biochemical data of adult thalassemia major patients (TM) with multiple endocrine complications (MEC) versus TM patients with normal endocrine functions: a long-term retrospective study (40 years) in a tertiary care center in Italy. Mediterr J Hematol Infect Dis 8(1):e2016022CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bazi A, Harati H, Khosravi-Bonjar A, Rakhshani E, Delaramnasab M (2018) Hypothyroidism and hypoparathyroidism in thalassemia major patients: a study in Sistan and Baluchestan Province, Iran. Int J Endocrinol Metab 16(2):e13228CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Teawtrakul N, Jetsrisuparb A, Pongudom S, Sirijerachai C, Chansung K, Wanitpongpun C et al (2018) Epidemiologic study of major complications in adolescent and adult patients with thalassemia in Northeastern Thailand: the E-SAAN study phase I. Hematology 23(1):55–60CrossRefPubMedGoogle Scholar
  33. 33.
    Chuncharunee S, Teawtrakul N, Siritanaratkul N, Chueamuangphan N (2019) Review of disease-related complications and management in adult patients with thalassemia: a multi-center study in Thailand. PLoS One 14(3):e0214148CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kolnagou A, Michaelides Y, Kontoghiorghe CN, Kontoghiorghes GJ (2013) The importance of spleen, spleen iron, and splenectomy for determining total body iron load, ferrikinetics, and iron toxicity in thalassemia major patients. Toxicol Mech Methods 23(1):34–41CrossRefPubMedGoogle Scholar
  35. 35.
    Cappellini M-D, Cohen A, Porter J, Taher A, Viprakasit V (2014) Guidelines for the management of transfusion dependent thalassaemia (TDT): thalassaemia. International Federation Nicosia, Cyprus, pp 174–175Google Scholar
  36. 36.
    Isik P, Yarali N, Tavil B, Demirel F, Karacam GB, Sac RU et al (2014) Endocrinopathies in Turkish children with Beta thalassemia major: results from a single center study. Pediatr Hematol Oncol 31(7):607–615CrossRefPubMedGoogle Scholar
  37. 37.
    Altincik A, Akin M (2016) Prevalence of endocrinopathies in Turkish children with beta-thalassemia major: a single-center study. J Pediatr Hematol Oncol 38(5):389–393CrossRefPubMedGoogle Scholar
  38. 38.
    Chern JP, Lin KH, Lu MY, Lin DT, Lin KS, Chen JD et al (2001) Abnormal glucose tolerance in transfusion-dependent beta-thalassemic patients. Diabetes Care 24(5):850–854CrossRefPubMedGoogle Scholar
  39. 39.
    Najafipour F, Aliasgarzadeh A, Aghamohamadzadeh N, Bahrami A, Mobasri M, Niafar M et al (2008) A cross-sectional study of metabolic and endocrine complications in beta-thalassemia major. Ann Saudi Med 28(5):361–366CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sharma S, Dutt N, Sidhu M, Digra S, Meenia R (2017) Prevalence of hypothyroidism, diabetes mellitus and delayed puberty in patients of thalassemia major in a tertiary care center of Jammu province, Jammu Kashmir, India. Int J Adv Med 4(3):673–677CrossRefGoogle Scholar
  41. 41.
    Pirinççioğlu AG, Gökalp D, Söker M (2017) Parathyroid functions in thalassemia major patients. Ann Clin Endocrinol Metab 1:015–019CrossRefGoogle Scholar
  42. 42.
    Tangngam H, Mahachoklertwattana P, Poomthavorn P, Chuansumrit A, Sirachainan N, Chailurkit L et al (2018) Under-recognized hypoparathyroidism in thalassemia. J Clin Res Pediatr Endocrinol 10(4):324–330PubMedPubMedCentralGoogle Scholar
  43. 43.
    De Sanctis V, Soliman AT, Canatan D, Elsedfy H, Karimi M, Daar S et al (2018) An ICET—a survey on hypoparathyroidism in patients with thalassaemia major and intermedia: a preliminary report. Acta Biomed 88(4):435–444PubMedGoogle Scholar
  44. 44.
    El-Din LB, Ebeid FS, Toaima NN, Ibrahim WW (2018) Hypoparathyroidism in children with β-thalassemia major and its relation to iron chelation therapy. Egypt J Haematol 43(2):63CrossRefGoogle Scholar
  45. 45.
    Rehim MH, Mustafa S, Rizvi SKA (2017) Correlation between serum TSH and serum ferritin in patients of beta thalassemia major. Pak J Med Health Sci 11(1):266–269Google Scholar
  46. 46.
    Soliman AT, Al Yafei F, Al-Naimi L, Almarri N, Sabt A, Yassin M et al (2013) Longitudinal study on thyroid function in patients with thalassemia major: high incidence of central hypothyroidism by 18 years. Indian J Endocrinol Metab 17(6):1090–1095CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jaruratanasirikul S, Wongcharnchailert M, Laosombat V, Sangsupavanich P, Leetanaporn K (2007) Thyroid function in β-thalassemic children receiving hypertransfusions with suboptimal iron-chelating therapy. J Med Assoc Thail 90:1798–1802Google Scholar
  48. 48.
    Abdel-Razek AR, Abdel-Salam A, El-Sonbaty MM, Youness ER (2013) Study of thyroid function in Egyptian children with beta-thalassemia major and beta-thalassemia intermedia. J Egypt Public Health Assoc 88(3):148–152CrossRefPubMedGoogle Scholar
  49. 49.
    Azami M, Parizad N, Sayehmiri K (2016) Prevalence of hypothyroidism, hypoparathyroidism and the frequency of regular chelation therapy in patients with thalassemia major in Iran: a systematic review and meta-analysis study. Iran J Pediatr Hematol Oncol 6(4):261–276Google Scholar
  50. 50.
    Malik SA, Syed S, Ahmed N (2010) Frequency of hypothyroidism in patients of b-thalassemia. J Pak Med Assoc 60:17–21PubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2019

Authors and Affiliations

  • M. Bordbar
    • 1
  • H. Bozorgi
    • 1
  • F. Saki
    • 1
    • 2
  • S. Haghpanah
    • 1
  • M. Karimi
    • 1
  • A. Bazrafshan
    • 1
  • O. R. Zekavat
    • 1
    Email author
  1. 1.Nemazee Hospital, Hematology Research CenterShiraz University of Medical SciencesShirazIran
  2. 2.Shiraz Endocrinology and Metabolism Research CenterShiraz University of Medical SciencesShirazIran

Personalised recommendations